Сравнительный анализ напряженного состояния оболочки одинакового ската аналитическим и численными методами
- Авторы: Алёшина О.О.1, Иванов В.Н.1, Кахамарка-Сунига Д.2
-
Учреждения:
- Российский университет дружбы народов
- Католический университет города Куэнки
- Выпуск: Том 18, № 4 (2022)
- Страницы: 375-386
- Раздел: Аналитические и численные методы расчета конструкций
- URL: https://journals.rcsi.science/1815-5235/article/view/325784
- DOI: https://doi.org/10.22363/1815-5235-2022-18-4-375-386
- ID: 325784
Цитировать
Полный текст
Аннотация
Исследование напряженно-деформированного состояния оболочки одинакового ската с эллипсом в основании не получило широкого распространения. Настоящая работа является частью серии статей, посвященных анализу геометрии и напряженного состояния торсов одинакового ската с направляющим эллипсом различными методами при различных нагрузках и условиях опирания. Представлен вывод дифференциальных уравнений равновесия безмоментной теории оболочек для определения внутренних сил в торсе с направляющим эллипсом под действием внутреннего давления. Аналитические результаты сравниваются с результатами, полученными методом конечных элементов (МКЭ) и вариационно-разностным методом (ВРМ). Определены преимущества и недостатки трех методов расчета и установлено, что результаты ВРМ точнее по сравнению с МКЭ, но программное обеспечение на основе МКЭ является более мощным инструментом для выполнения расчета конструкции.
Об авторах
Ольга Олеговна Алёшина
Российский университет дружбы народов
Автор, ответственный за переписку.
Email: xiaofeng@yandex.ru
ORCID iD: 0000-0001-8832-6790
кандидат технических наук, ассистент, департамент строительства, Инженерная академия
Российская Федерация, 117198, Москва, ул. Миклухо-Маклая, д. 6Вячеслав Николаевич Иванов
Российский университет дружбы народов
Email: i.v.ivn@mail.ru
ORCID iD: 0000-0003-4023-156X
доктор технических наук, профессор-консультант, департамент строительства, Инженерная академия
Российская Федерация, 117198, Москва, ул. Миклухо-Маклая, д. 6Давид Кахамарка-Сунига
Католический университет города Куэнки
Email: cajamarca.zuniga@gmail.com
ORCID iD: 0000-0001-8796-4635
доцент департамента строительства
Республика Эквадор, 010101, Куэнка, Ave Las Americas & HumboldtСписок литературы
- Ivanov V.N., Alyoshina O.О. Comparative analysis of the stress-strain state’s parameters of equal slope shell with the director ellipse using three calculation methods. Structural Mechanics and Analysis of Constructions. 2020;(3):37-46. (In Russ.) https://doi.org/10.37538/0039-2383.2020.3.37.46
- Aleshina O.O., Ivanov V.N., Cajamarca-Zuniga D. Stress state analysis of an equal slope shell under uniformly distributed tangential load by different methods. Structural Mechanics of Engineering Constructions and Buildings. 2021;17(1):51-62. https://doi.org/10.22363/1815-5235-2021-17-1-51-62
- Aleshina O.O., Ivanov V.N., Grinko E.A. Investigation of the equal slope shell stress state by analytical and two numerical methods. Structural Mechanics and Analysis of Constructions. 2020;(6):2-13. (In Russ.) https://doi.org/10.37538/0039-2383.2020.6.2.13
- Ivanov V.N., Alyoshina O.O. Comparative analysis of the results of determining the parameters of the stress-strain state of equal slope shell. Structural Mechanics of Engineering Constructions and Buildings. 2019;15(5):374-383. (In Russ.) https://doi.org/10.22363/1815-5235-2019-15-5-374-383
- Aleshina O.O. New investigation of the stress-strain state of the torso-shaped awning. International Conference Scientific Research of the SCO Countries: Synergy and Integration. Beijin: Infinity; 2020. p. 130-136. https://doi.org/10.34660/INF.2020.26.58262
- Aleshina O.O. Studies of geometry and calculation of torso shells of an equal slope. Structural Mechanics and Analysis of Constructions. 2019;(3):63-70. (In Russ.)
- Alyoshina O.О. Definition of the law of setting closed curves torso shells of the equal slope. Engineering Systems - 2020: Proceedings of the Scientific and Practical Conference with International Participation (Moscow, 14-16 October 2020) (vol. 1). Moscow; 2020. p. 22-30. (In Russ.)
- Zhou F.-X. A constant slope surface and its application. 2022 3rd International Conference on Geology, Mapping and Remote Sensing. IEEE; 2022. p. 78-81. https://doi.org/10.1109/ICGMRS55602.2022.9849334
- Krivoshapko S.N., Timoshin М.А. Static analysis of a torse shell of equal slope with a director ellipse. Structural Mechanics of Engineering Constructions and Buildings. 2008;(1):3-10. (In Russ.)
- Hu Jian-guo, Chen Yue-ping. Mathematical model of the identical slope surface. Wuhan University Journal of Natural Sciences. 2002;7:54-58. https://doi.org/10.1007/BF02830014
- Krivoshapko S.N. Geometry of ruled surfaces with cuspidal edge and linear theory of analysis of torse shells. Moscow; 2009. (In Russ.)
- Klochkov Y.V., Vakhinina O.V., Kiseleva T.A. Calculation of thin shells on the basis of the triangular final element with the correcting Lagrange’s coefficients. Structural Mechanics of Engineering Constructions and Buildings. 2015;(5):55-59. (In Russ.)
- Klochkov Y.V., Nikolaev A.P., Ishchanov T.R., Andreev A.S., Klochkov M.Y. Accounting for geometric nonlinearity in finite element strength calculations of thin-walled shell-type structures. Structural Mechanics of Engineering Constructions and Buildings. 2020;16(1):31-37. (In Russ.) https://doi.org/10.22363/1815-5235-2020-16-1-31-37
- Ivanov V.N. Fundamentals of the finite element method and the variational-difference method. Moscow: RUDN University; 2008. (In Russ.)
- Maksimyuk V.A., Storozhuk E.A., Chernyshenko I.S. Variational finite-difference methods in linear and nonlinear problems of the deformation of metallic and composite shells. International Applied Mechanics. 2012;48(6):613-687. https://doi.org/10.1007/s10778-012-0544-8
- Govind P.L. Complicated features and their solution in analysis of thin shell and plate structures. Structural Mechanics of Engineering Constructions and Buildings. 2018;14(6):509-515. https://doi.org/10.22363/1815-5235-2018-14-6-509-515
- Ivanov V.N., Rynkovskaya M.I. Analysis of thin walled wavy shell of Monge type surface with parabola and sinusoid curves by variational-difference method. MATEC Web of Conferences, Shanghai, 21-23 October 2016. 2017;95:12007. https://doi.org/10.1051/matecconf/20179512007
- Barve V.D., Dey S.S. Isoparametric finite difference energy method for plate bending problems. Computers and Structures. 1983;17(3):459-465. https://doi.org/10.1016/0045-7949(83)90137-2
- Bushnell D., Almroth B.O., Brogan F. Finite-difference energy method for nonlinear shell analysis. Computers and Structures. 1971;1(3):361-387. https://doi.org/10.1016/0045-7949(71)90020-4
- Ihlenburg F.F. Plate bending analysis with variational finite difference methods on general grid. Computers and Structures. 1993;48(1):141-151. https://doi.org/10.1016/0045-7949(93)90465-P
- Ivanov V.N., Krivoshapko S.N. Analytical methods for calculating shells of non-canonical form. Moscow; 2010. (In Russ.)
- Courant R. Variational methods for the solution of problems of equilibrium and vibrations. Bulletin of the American Mathematical Society. 1943;49(1):1-23.
- Mikhlin S.G. Variational-difference approximation. Journal of Soviet Mathematics. 1978;10(5):661-787. https://doi.org/10.1007/BF01083968
- Zhong H., Yu T. A weak form quadrature element method for plane elasticity problems. Applied Mathematical Modelling. 2009;33(10):3801-3814. https://doi.org/1016/j.apm.2008.12.007
- Griffin D.S., Varga R.S. Numerical solution of plane elasticity problems. Journal of the Society for Industrial and Applied Mathematics. 1963;11(4):1046-1062.
- Brush D.O., Almroth B.O. Buckling of bars, plates, and shells. New York: McGraw-Hill; 1975.
- Ivanov V.N., Lamichane G.P. Compound space constructions. Engineering Systems - 2020: Proceedings of the Scientific and Practical Conference with International Participation (Moscow, 14-16 October 2020) (vol. 1). Moscow; 2020. p. 31-39. (In Russ.)
- Krivoshapko S.N., Ivanov V.N. Encyclopedia of analytical surfaces. Springer; 2015.
- Krivoshapko S.N. Perspectives and Advantages of tangential developable surfaces in modeling machine-building and building designs. Bulletin of Civil Engineers. 2019;16(1)20-30. (In Russ.) https://doi.org/10.23968/1999-5571-2019-16-1-20-30
- Krivoshapko S.N. The application, geometrical and strength researches of torse shells: the review of works published after 2008. Structural Mechanics and Analysis of Constructions. 2018;(2):19-25. (In Russ.)
Дополнительные файлы
