Stress state analysis of an equal slope shell under uniformly distributed tangential load by different methods


如何引用文章

详细

Nowadays there are various calculation methods for solving a wide range of problems in construction, hydrodynamics, thermal conductivity, aerospace research and many other areas of industry. Analytical methods that make up one class for solving problems, and numerical calculation methods that make up another class, including those implemented in computing complexes, are used for the design and construction of various thin-walled structures such as shells. Due to the fact that thin-walled spatial structures in the form of various shells are widely used in many areas of human activity it is useful to understand and know the capabilities of different calculation methods. Research works on the study of the stress-strain state of the torse shell of equal slope with an ellipse at the base are not widely available at the moment. For the first time the derivation of the differential equations of equilibrium of momentless theory of shells to determine the normal force Nu from the action of uniformly distributed load tangentially directed along rectilinear generatrixes to the middle surface of the torse of equal slope with a directrix ellipse is presented in this article. The parameters of the stress state of the studied torse are also obtained by the finite element method and the variational-difference method. The SCAD software based on the finite element method and the program SHELLVRM written on the basis of the variational-difference method are used. The numerical results of the parameters of the stress state of the studied torse are analyzed, and the advantages and disadvantages of the analytical method and two numerical calculation methods are determined.

作者简介

Olga Aleshina

Peoples’ Friendship University of Russia (RUDN University)

编辑信件的主要联系方式.
Email: xiaofeng@yandex.ru

teacher-researcher, assistant of the Department of Civil Engineering of the Academy of Engineering

6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation

Vyacheslav Ivanov

Peoples’ Friendship University of Russia (RUDN University)

Email: xiaofeng@yandex.ru

Professor of the Department of Civil Engineering of the Academy of Engineering, Doctor of Technical Sciences

6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation

David Cajamarca-Zuniga

Catholic University of Cuenca

Email: xiaofeng@yandex.ru

Docent of the Department of Civil Engineering

Av. De las Americas & Humboldt, Cuenca, 010101, Republic of Ecuador

参考

  1. Sabat L., Kundu C.K. History of finite element method: a review. Recent Developments in Sustainable Infrastructure. 2021:395-404. https://doi.org/10.1007/978-981-15-4577-132
  2. Gupta K.K., Meek J.L. A brief history of the beginning of the finite element method. International Journal for Numerical Methods in Engineering. 1996;39(22):3761-3774. https://doi.org/10.1002/(SICI)1097-0207(19961130)39:22<3761:: AID-NME22>3.0.CO;2-5
  3. Zenkevich O., Morgan K. Konechnye elementy i approksimaciya [Finite elements and approximation]. Moscow: Mir Publ.; 1986. (In Russ.)
  4. Tyukalov Yu.Ya. Finite element models in stresses for bending plates. Magazine of Civil Engineering. 2018;6(82): 170-190. https://doi.org/10.18720/MCE.82.16
  5. Tyukalov Yu.Ya. Finite element models in stresses for plane elasticity problems. Magazine of Civil Engineering. 2018;1(77):23-37. https://doi.org/10.18720/MCE.77.3
  6. Cen S., Li C., Rajendran S., Hu Z. Advances in finite element method. Mathematical Problems in Engineering. 2014:206369. https://doi.org/10.1155/2014/206369
  7. Bushnell D., Almroth B.O., Brogan F. Finite-difference energy method for nonlinear shell analysis. Computers and Structures. 1971;1(3):361-387. https://doi.org/10.1016/0045-7949(71)90020-4
  8. Barve V.D., Dey S.S. Isoparametric finite difference energy method for plate bending problems. Computers and Structures. 1983;17(3):459-465. https://doi.org/10.1016/0045-7949(83)90137-2
  9. Maksimyuk V.A., Storozhuk E.A., Chernyshenko I.S. Variational finite-difference methods in linear and nonlinear problems of the deformation of metallic and composite shells. International Applied Mechanics. 2012;48(6):613-687. https://doi.org/10.1007/s10778-012-0544-8
  10. Trushin S., Goryachkin D. Numerical evaluation of stress-strain state of bending plates based on various models. Procedia Engineering. 2016;153:781-784. https://doi.org/10.1016/j.proeng.2016.08.242
  11. Ivanov V.N., Kushnarenko I. Stiffeners in variational-difference method for calculating shells with complex geometry. Vestnik MGSU. Proceedings of Moscow State University of Civil Engineering. 2014;(5):25-34. (In Russ.)
  12. Ivanov V., Rynkovskaya M. Analysis of thin walled wavy shell of monge type surface with parabola and sinusoid curves by variational-difference method. MATEC Web of Conferences. 2017;95:1-5. https://doi.org/10.1051/matecconf/20179512007
  13. Govind P.L. Complicated features and their solution in analysis of thin shell and plate structures. Structural Mechanics of Engineering Constructions and Buildings. 2018;14(6):509-515. https://doi.org/10.22363/1815-5235-2018-14-6-509-515
  14. Dzhavadyan A.D. Grid selection in the variation-difference method for solving second-order elliptic equations with quasidegenerate quadratic form. USSR Computational Mathematics and Mathematical Physics. 1989;29(6):22-33. 10.1016/s0041-5553(89)80004-7' target='_blank'>https://doi.org/doi: 10.1016/s0041-5553(89)80004-7
  15. Ivanov V.N. Osnovy metoda konechnyh elementov i variacionno-raznostnogo metoda [Fundamentals of the finite element method and the variational-difference method]. Moscow: RUDN Publ.; 2008. (In Russ.)
  16. Ivanov V.N. The variational-difference method and the method of global elements in the calculation of interfaces of shell compartments. Structural Mechanics of Engineering Constructions and Buildings. 2003;12:34-41. (In Russ.)
  17. Mikhlin S.G. Variational-difference approximation. Journal of Soviet Mathematics. 1978;10(5):661-787. https://doi.org/https://doi.org/10.1007/BF01083968
  18. Courant R. Variational methods for the solution of problems of equilibrium and vibrations. Bulletin of the American Mathematical Society. 1943;49(1):1-23.
  19. Zhong H., Yu T. A weak form quadrature element method for plane elasticity problems. Applied Mathematical Modelling. 2009;33(10):3801-3814. https://doi.org/10.1016/j.apm.2008.12.007
  20. Griffin D.S., Varga R.S. Numerical solution of plane elasticity problems. Journal of the Society for Industrial and Applied Mathematics. 1963;11(4):1046-1062.
  21. Brush D.O., Almroth B.O. Buckling of bars, plates, and shells. New York: McGraw-Hill; 1975.
  22. Xing Y., Liu B., Liu G. A differential quadrature finite element method. International Journal of Applied Mechanics. 2010;2(1):207-227. https://doi.org/10.1142/S1758825110000470
  23. Repin S.I. A variational-difference method of solving problems with functionals of linear growth. USSR Computational Mathematics and Mathematical Physics. 1989;29(3):35-46. https://doi.org/10.1016/0041-5553(89)90145-6
  24. Ivanov V.N., Krivoshapko S.N. Analiticheskie metody rascheta obolochek nekanonicheskoj formy [Analytical methods for calculating shells of non-canonical form]. Moscow; 2010. (In Russ.)
  25. Krivoshapko S.N., Ivanov V.N. Encyclopedia of analytical surfaces. Switzerland: Springer International Publishing AG; 2015.
  26. Ivanov V.N., Romanova V.A. Konstruktsionnye formy prostranstvennykh konstruktsii. Vizualizatsiya poverkhnostei v sistemakh MathCad, AutoCad [Constructive forms of space constructions. visualization of the surfaces at the systems “MathCAD" and “AutoCAD”]. Moscow: ASV Publishing House; 2016. (In Russ.)
  27. Krivoshapko S.N. Geometriya linejchatyh poverhnostej s rebrom vozvrata i linejnaya teoriya rascheta torsovyh obolochek [Geometry of ruled surfaces with cuspidal edge and linear theory of analysis of torse shells]. Moscow; 2009. (In Russ.)
  28. Krivoshapko S.N. The application, geometrical and strength researches of torse shells: the review of works published after 2008. Structural Mechanics and Analysis of Constructions. 2018;2:19-25.
  29. Krivoshapko S.N. Perspectives and advantages of tangential developable surfaces in modeling machine-building and building designs. Vestnik Grazhdanskix Inzhenerov [Proceedings of Civil Engineers]. 2019;16(1):20-30. (In Russ.) https://doi.org/10.23968/1999-5571-2019-16-1-20-30
  30. Aleshina O.O. New information about the use of shells with tangential developable middle surfaces. Process Management and Scientific Developments. Birmingham: Infinity; 2020. p. 140-146.
  31. Chen M., Tang K. A fully geometric approach for developable cloth deformation simulation. Visual Computer. 2010;26(6-8):853-863. https://doi.org/10.1007/s00371-010-0467-5
  32. Ivanov V.N., Alyoshina O.O. Comparative Analysis of the stress-strain state’s parameters of equal slope shell with the director ellipse using three calculation methods. Structural Mechanics and Analysis of Constructions, 2020;3(290):37-46. (In Russ.) https://doi.org/10.37538/0039-2383.2020.3.37.46
  33. Aleshina O.O., Ivanov V.N., Grinko E.A. Investigation of the equal slope shell stress state by analytical and two numerical methods. Structural Mechanics and Analysis of Constructions. 2020;6:2-13. https://doi.org/10.37538/0039-2383.2020.6.2.13
  34. Ivanov V.N., Alyoshina O.O. Comparative analysis of the results of determining the parameters of the stress-strain state of equal slope shell. Structural Mechanics of Engineering Constructions and Buildings. 2019;15(5):374-383. http://dx.doi.org/10.22363/1815-5235-2019-15-5-374-383 (In Russ.)
  35. Aleshina O.O. Studies of geometry and calculation of torso shells of an equal slope. Structural Mechanics and Analysis of Constructions. 2019;3:63-70. (In Russ.)
  36. Alyoshina O.O. Definition of the law of setting closed curves torso shells of the equal slope. Proceedings of the scientific and practical conference with international participation “Engineering Systems - 2020”, dedicated to the 60th anniversary of the Peoples’ Friendship University of Russia, Moscow, October 14-16, 2020. 2020;1:22-30. (In Russ.)
  37. Kumudini Jayavardena M.K. Geometry and example of strength analysis of thin elastic shell in the form of a torse-helicoid. Questions of the strength of spatial systems: materials of the XXVIII Scientific Conference of the Engineering Faculty. Moscow: RUDN Publ.; 1992. p. 48-51. (In Russ.)
  38. Krivoshapko S.N., Krutov A.B. Cuspidal edges, lines of the unit and self-intersectionsof some technologiсal surfaces of slope. Journal of Engineering Researches. 2001;1:98-104. (In Russ.)
  39. Ivanov V.N., Lamichane G.P. Compound space constructions. Proceedings of the scientific and practical conference with international participation “Engineering Systems - 2020”, dedicated to the 60th anniversary of the Peoples’ Friendship University of Russia, Moscow, October 14-16, 2020. 2020;1:31-39. (In Russ.)
  40. Krivoshapko S.N. The opportunities of umbrella-type shells. Structural Mechanics of Engineering Constructions and Buildings. 2020;16(4):271-278. http://dx.doi.org/10.22363/1815-5235-2020-16-4-271-278
  41. Krivoshapko S.N. Analytical ruled surfaces and their complete classification. Structural Mechanics of Engineering Constructions and Buildings. 2020;16(2):131-138. http://dx.doi.org/10.22363/1815-5235-2020-16-2-131-138 (In Russ.)

补充文件

附件文件
动作
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».