Анализ напряженного состояния оболочки одинакового ската при действии равномерно распределенной касательной нагрузки различными методами
- Авторы: Алёшина О.О.1, Иванов В.Н.1, Кахамарка-Сунига Д.2
-
Учреждения:
- Российский университет дружбы народов
- Католический университет
- Выпуск: Том 17, № 1 (2021)
- Страницы: 51-62
- Раздел: Аналитические и численные методы расчета конструкций
- URL: https://journals.rcsi.science/1815-5235/article/view/325696
- DOI: https://doi.org/10.22363/1815-5235-2021-17-1-51-62
- ID: 325696
Цитировать
Аннотация
На сегодняшний день существуют различные методы расчета для решения широкого спектра задач в строительстве, гидродинамике, теплопроводности, космических исследованиях и других отраслях. Для проектирования и возведения разнообразных тонкостенных конструкций типа оболочек применяются аналитические методы, составляющие один класс для решения задач, и численные методы расчета, составляющие другой класс, в том числе реализованные в вычислительных комплексах. В связи с тем, что тонкостенные пространственные конструкции в форме разнообразных оболочек широко используются во многих сферах деятельности человека, полезно понимать и знать возможности различных методов расчета. Работы по исследованию напряженно-деформированного состояния торсовой оболочки одинакового ската с эллипсом в основании представлены на данный момент в малом объеме. В статье впервые приводится вывод дифференциальных уравнений равновесия безмоментной теории оболочек для определения нормального усилия Nu от действия равномерно-распределенной нагрузки, направленной по касательной вдоль прямолинейных образующих к срединной поверхности торса одинакового ската с направляющим эллипсом. Также получены параметры напряженного состояния исследуемого торса методом конечных элементов и вариационно-разностным методом. Используются вычислительный комплекс SCAD Office на основе метода конечных элементов и программа SHELLVRM, написанная на базе вариационно-разностного метода. Выполнен анализ числовых результатов параметров напряженного состояния исследуемого торса, установлены плюсы и минусы применения аналитического метода и двух численных методов расчета.
Об авторах
Ольга Олеговна Алёшина
Российский университет дружбы народов
Автор, ответственный за переписку.
Email: xiaofeng@yandex.ru
преподаватель-исследователь, ассистент департамента строительства Инженерной академии
Российская Федерация, 117198, Москва, ул. Миклухо-Маклая, д. 6Вячеслав Николаевич Иванов
Российский университет дружбы народов
Email: xiaofeng@yandex.ru
профессор департамента строительства Инженерной академии, доктор технических наук
Российская Федерация, 117198, Москва, ул. Миклухо-Маклая, д. 6Давид Кахамарка-Сунига
Католический университет
Email: xiaofeng@yandex.ru
доцент инженерного факультета
г. Куэнка, Республика Эквадор, 010101, Куэнка, Av. De las Americas & HumboldtСписок литературы
- Sabat L., Kundu C.K. History of finite element method: a review. Recent Developments in Sustainable Infrastructure. 2021:395-404. https://doi.org/10.1007/978-981-15-4577-132
- Gupta K.K., Meek J.L. A brief history of the beginning of the finite element method. International Journal for Numerical Methods in Engineering. 1996;39(22):3761-3774. https://doi.org/10.1002/(SICI)1097-0207(19961130)39:22<3761:: AID-NME22>3.0.CO;2-5
- Zenkevich O., Morgan K. Konechnye elementy i approksimaciya [Finite elements and approximation]. Moscow: Mir Publ.; 1986. (In Russ.)
- Tyukalov Yu.Ya. Finite element models in stresses for bending plates. Magazine of Civil Engineering. 2018;6(82): 170-190. https://doi.org/10.18720/MCE.82.16
- Tyukalov Yu.Ya. Finite element models in stresses for plane elasticity problems. Magazine of Civil Engineering. 2018;1(77):23-37. https://doi.org/10.18720/MCE.77.3
- Cen S., Li C., Rajendran S., Hu Z. Advances in finite element method. Mathematical Problems in Engineering. 2014:206369. https://doi.org/10.1155/2014/206369
- Bushnell D., Almroth B.O., Brogan F. Finite-difference energy method for nonlinear shell analysis. Computers and Structures. 1971;1(3):361-387. https://doi.org/10.1016/0045-7949(71)90020-4
- Barve V.D., Dey S.S. Isoparametric finite difference energy method for plate bending problems. Computers and Structures. 1983;17(3):459-465. https://doi.org/10.1016/0045-7949(83)90137-2
- Maksimyuk V.A., Storozhuk E.A., Chernyshenko I.S. Variational finite-difference methods in linear and nonlinear problems of the deformation of metallic and composite shells. International Applied Mechanics. 2012;48(6):613-687. https://doi.org/10.1007/s10778-012-0544-8
- Trushin S., Goryachkin D. Numerical evaluation of stress-strain state of bending plates based on various models. Procedia Engineering. 2016;153:781-784. https://doi.org/10.1016/j.proeng.2016.08.242
- Ivanov V.N., Kushnarenko I. Stiffeners in variational-difference method for calculating shells with complex geometry. Vestnik MGSU. Proceedings of Moscow State University of Civil Engineering. 2014;(5):25-34. (In Russ.)
- Ivanov V., Rynkovskaya M. Analysis of thin walled wavy shell of monge type surface with parabola and sinusoid curves by variational-difference method. MATEC Web of Conferences. 2017;95:1-5. https://doi.org/10.1051/matecconf/20179512007
- Govind P.L. Complicated features and their solution in analysis of thin shell and plate structures. Structural Mechanics of Engineering Constructions and Buildings. 2018;14(6):509-515. https://doi.org/10.22363/1815-5235-2018-14-6-509-515
- Dzhavadyan A.D. Grid selection in the variation-difference method for solving second-order elliptic equations with quasidegenerate quadratic form. USSR Computational Mathematics and Mathematical Physics. 1989;29(6):22-33. 10.1016/s0041-5553(89)80004-7' target='_blank'>https://doi.org/doi: 10.1016/s0041-5553(89)80004-7
- Ivanov V.N. Osnovy metoda konechnyh elementov i variacionno-raznostnogo metoda [Fundamentals of the finite element method and the variational-difference method]. Moscow: RUDN Publ.; 2008. (In Russ.)
- Ivanov V.N. The variational-difference method and the method of global elements in the calculation of interfaces of shell compartments. Structural Mechanics of Engineering Constructions and Buildings. 2003;12:34-41. (In Russ.)
- Mikhlin S.G. Variational-difference approximation. Journal of Soviet Mathematics. 1978;10(5):661-787. https://doi.org/https://doi.org/10.1007/BF01083968
- Courant R. Variational methods for the solution of problems of equilibrium and vibrations. Bulletin of the American Mathematical Society. 1943;49(1):1-23.
- Zhong H., Yu T. A weak form quadrature element method for plane elasticity problems. Applied Mathematical Modelling. 2009;33(10):3801-3814. https://doi.org/10.1016/j.apm.2008.12.007
- Griffin D.S., Varga R.S. Numerical solution of plane elasticity problems. Journal of the Society for Industrial and Applied Mathematics. 1963;11(4):1046-1062.
- Brush D.O., Almroth B.O. Buckling of bars, plates, and shells. New York: McGraw-Hill; 1975.
- Xing Y., Liu B., Liu G. A differential quadrature finite element method. International Journal of Applied Mechanics. 2010;2(1):207-227. https://doi.org/10.1142/S1758825110000470
- Repin S.I. A variational-difference method of solving problems with functionals of linear growth. USSR Computational Mathematics and Mathematical Physics. 1989;29(3):35-46. https://doi.org/10.1016/0041-5553(89)90145-6
- Ivanov V.N., Krivoshapko S.N. Analiticheskie metody rascheta obolochek nekanonicheskoj formy [Analytical methods for calculating shells of non-canonical form]. Moscow; 2010. (In Russ.)
- Krivoshapko S.N., Ivanov V.N. Encyclopedia of analytical surfaces. Switzerland: Springer International Publishing AG; 2015.
- Ivanov V.N., Romanova V.A. Konstruktsionnye formy prostranstvennykh konstruktsii. Vizualizatsiya poverkhnostei v sistemakh MathCad, AutoCad [Constructive forms of space constructions. visualization of the surfaces at the systems “MathCAD" and “AutoCAD”]. Moscow: ASV Publishing House; 2016. (In Russ.)
- Krivoshapko S.N. Geometriya linejchatyh poverhnostej s rebrom vozvrata i linejnaya teoriya rascheta torsovyh obolochek [Geometry of ruled surfaces with cuspidal edge and linear theory of analysis of torse shells]. Moscow; 2009. (In Russ.)
- Krivoshapko S.N. The application, geometrical and strength researches of torse shells: the review of works published after 2008. Structural Mechanics and Analysis of Constructions. 2018;2:19-25.
- Krivoshapko S.N. Perspectives and advantages of tangential developable surfaces in modeling machine-building and building designs. Vestnik Grazhdanskix Inzhenerov [Proceedings of Civil Engineers]. 2019;16(1):20-30. (In Russ.) https://doi.org/10.23968/1999-5571-2019-16-1-20-30
- Aleshina O.O. New information about the use of shells with tangential developable middle surfaces. Process Management and Scientific Developments. Birmingham: Infinity; 2020. p. 140-146.
- Chen M., Tang K. A fully geometric approach for developable cloth deformation simulation. Visual Computer. 2010;26(6-8):853-863. https://doi.org/10.1007/s00371-010-0467-5
- Ivanov V.N., Alyoshina O.O. Comparative Analysis of the stress-strain state’s parameters of equal slope shell with the director ellipse using three calculation methods. Structural Mechanics and Analysis of Constructions, 2020;3(290):37-46. (In Russ.) https://doi.org/10.37538/0039-2383.2020.3.37.46
- Aleshina O.O., Ivanov V.N., Grinko E.A. Investigation of the equal slope shell stress state by analytical and two numerical methods. Structural Mechanics and Analysis of Constructions. 2020;6:2-13. https://doi.org/10.37538/0039-2383.2020.6.2.13
- Ivanov V.N., Alyoshina O.O. Comparative analysis of the results of determining the parameters of the stress-strain state of equal slope shell. Structural Mechanics of Engineering Constructions and Buildings. 2019;15(5):374-383. http://dx.doi.org/10.22363/1815-5235-2019-15-5-374-383 (In Russ.)
- Aleshina O.O. Studies of geometry and calculation of torso shells of an equal slope. Structural Mechanics and Analysis of Constructions. 2019;3:63-70. (In Russ.)
- Alyoshina O.O. Definition of the law of setting closed curves torso shells of the equal slope. Proceedings of the scientific and practical conference with international participation “Engineering Systems - 2020”, dedicated to the 60th anniversary of the Peoples’ Friendship University of Russia, Moscow, October 14-16, 2020. 2020;1:22-30. (In Russ.)
- Kumudini Jayavardena M.K. Geometry and example of strength analysis of thin elastic shell in the form of a torse-helicoid. Questions of the strength of spatial systems: materials of the XXVIII Scientific Conference of the Engineering Faculty. Moscow: RUDN Publ.; 1992. p. 48-51. (In Russ.)
- Krivoshapko S.N., Krutov A.B. Cuspidal edges, lines of the unit and self-intersectionsof some technologiсal surfaces of slope. Journal of Engineering Researches. 2001;1:98-104. (In Russ.)
- Ivanov V.N., Lamichane G.P. Compound space constructions. Proceedings of the scientific and practical conference with international participation “Engineering Systems - 2020”, dedicated to the 60th anniversary of the Peoples’ Friendship University of Russia, Moscow, October 14-16, 2020. 2020;1:31-39. (In Russ.)
- Krivoshapko S.N. The opportunities of umbrella-type shells. Structural Mechanics of Engineering Constructions and Buildings. 2020;16(4):271-278. http://dx.doi.org/10.22363/1815-5235-2020-16-4-271-278
- Krivoshapko S.N. Analytical ruled surfaces and their complete classification. Structural Mechanics of Engineering Constructions and Buildings. 2020;16(2):131-138. http://dx.doi.org/10.22363/1815-5235-2020-16-2-131-138 (In Russ.)
Дополнительные файлы
