An analysis of annular plate in curvilinear non-orthogonal coordinates with the help of equations of a shell theory
- Autores: Krivoshapko S.N.1
-
Afiliações:
- Peoples’ Friendship University of Russia (RUDN University)
- Edição: Volume 16, Nº 6 (2020)
- Páginas: 472-480
- Seção: Thin Elastic Shells Theory
- URL: https://journals.rcsi.science/1815-5235/article/view/325639
- DOI: https://doi.org/10.22363/1815-5235-2020-16-6-472-480
- ID: 325639
Citar
Texto integral
Resumo
The complete system of equations of a linear theory of thin shells in curvilinear non-orthogonal coordinates proposed in the paper was taken as the basis of the investigation. Earlier, this system was used for static analysis of a long developable helicoid. In the article, this system is applied for the determination of stress-strain state of annular and circular plates under action of the external axisymmetric uniform load acting both in the plane of the plate and out-of-their plane. Presented results for annular plate given in the non-orthogonal coordinates ex-pand a number of problems that can be solved analytically. They can be used as the first terms of series of expansion of displacements of degrees of the small parameter if a small parameter method is applied for examining a long tangential developable helicoid.
Sobre autores
Sergey Krivoshapko
Peoples’ Friendship University of Russia (RUDN University)
Autor responsável pela correspondência
Email: sn_krivoshapko@mail.ru
Professor of the Department of Civil Engineering of Academy of Engineering, DSc, Professor
6 Miklukho-Maklaya St, Moscow, 117198, Russian FederationBibliografia
- Goldenveizer A.L. Theory of Elastic Thin Shells. New York: Pergamon Press; 1961.
- Grigorenko Ya.M., Timonin A.M. On one approach to the numerical solution of boundary problems on theory of complex geometry shells in the non-orthogonal curvilinear coordinate systems. Doklady AN Ukrainskoy SSR [Reports of Academy of Science of the Ukrainian SSR]. 1991;4(9):41-44. (In Russ.)
- Krivoshapko S.N. Two types of governing equations for shells with the middle surfaces given in arbitrary curvilinear coordinates. Structural Mechanics of Engineering Constructions and Buildings. 2017;(1):15-22. (In Russ.) Available from: http://journals.rudn.ru/structural-mechanics/article/view/15201 (accessed: 12.08.2020).
- Krivoshapko S.N. Geometriya lineychatyh poverkhnostey s rebrom vosvrata i lineynaya teoriya raschota torsovyh obolochek [Geometry of ruled surfaces with cuspidal edge and linear theory of analysis of tangential developable shells]: monograph. Moscow: RUDN Publ.; 2009. (In Russ.)
- Krivoshapko S.N. Static analysis of shells with developable middle surfaces. Applied Mechanics Reviews. 1998; 51(12)(Part 1):731-746.
- Bajoriya G.Ch. An analysis of a long developable open helicoid with using of a moment theory in displacements. Structural Mechanics and Analysis of Constructions. 1985;3:22-24. (In Russ.)
- Rynkovskaya M.I. On problem of strength analysis of thin linear helicoidal shells. Structural Mechanics of Engineering Constructions and Buildings. 2015;(6):13-15. (In Russ.) Available from: http://journals.rudn.ru/structural-mechanics/article/view/10871 (accessed: 12.08.2020).
- Krivoshapko S.N., Gbaguidi-Aïssè G. Two methods of analysis of thin elastic open helicoidal shells. International Journal of Research and Reviews in Applied Sciences. 2012;2(12)(3):382-390.
- Krivoshapko S.N., Rynkovskaya M. Five types of ruled helical surfaces for helical conveyers, support anchors and screws. MATEC Web of Conferences. 2017;95:06002. http://dx.doi.org/10.1051/matecconf/20179506002
- Rynkovskaya M., Ivanov V. Analytical method to analyze right helicoid stress-strain. Advanced Structured Materials. 2019;92:157-171.
- Tupikova E.M. Semi-analytical analysis of a long shallow oblique helicoidal shell in a non-orthogonal non-conjugate coordinate system. Structural Mechanics of Engineering Constructions and Buildings. 2016;(3):3-8. (In Russ.) Available from: http://journals.rudn.ru/structural-mechanics/article/view/11254 (accessed: 12.08.2020).
- Hayder Abdulameer Mehdi. Derivation of Annular Plate Sector Element for General Bending Analysis. Journal of Engineering and Sustainable Development. 2015;19(1):14-30.
- Noh S., Abdalla M.M., Waleed W.F. Buckling analysis of isotropic circular plate with attached annular piezoceramic plate. Malaysian Journal of Mathematical Sciences. 2016(February);10(S):443-458. Available from: http://einspem.upm.edu.my/journal (accessed: 12.08.2020).
- Jawad M.H. Design of Plate & Shell Structures. New York: ASME Press; 2004.
- Krivoshapko S.N. The application of asymptotical method of a small parameter for analytic analysis of thin elastic torse-helicoids. Prostranstvennie konstrukzii sdaniy i sooruzheniy [Space Structures of Buildings and Erections]. 2004; 9:36-44. (In Russ.)
- Civalek Ö., Çatal H.H. Linear static and vibration analysis of circular and annular plates by the harmonic differential quadrature (HDQ) method. Eng. & Arch. Fac. Osmangazi University. 2003;XVII(1):43-71.
- Shariyat M., Mohammadjani R. Three-dimensional compatible finite element stress analysis of spinning two-directional FGM annular plates and disks with load and elastic foundation non-uniformities. Latin American Journal of Solids and Structures. 2013;10(5):859-890. http://dx.doi.org/10.1590/S1679-78252013000500002
- Mattikalli A.C., Kurahatti R.V. Analysis of annular plate by using numerical method. International Journal of Innovative Science, Engineering & Technology. 2018;5(1):5. Available from: http://ijiset.com/vol5/v5s1/IJISET_V5_I01_01.pdf (accessed: 12.08.2020).
- Zietlow D.W., Griffin D.C., Moore T.R. The limitations on applying classical thin plate theory to thin annular plates clamped on the inner boundary. AIP Advances. 2012;2(4):042103. https://doi.org/10.1063/1.4757928
- Zenkour A.M. Bending of a sector shaped annular plate with continuous thickness variation along the radial direction. Quarterly Journal of Mechanics and Applied Mathematics. 2004(May);57(2):205-223. doi: 10.1093/qjmam/57.2.205.
Arquivos suplementares
