Stress-strain state of shell of revolution analysis by using various formulations of three-dimensional finite elements
- Autores: Gureeva N.A.1, Klochkov Y.V.2, Nikolaev A.P.2, Yushkin V.N.2
-
Afiliações:
- Financial University under the Government of the Russian Federation
- Volgоgrad State Agrarian University
- Edição: Volume 16, Nº 5 (2020)
- Páginas: 361-379
- Seção: Numerical methods of structures’ analysis
- URL: https://journals.rcsi.science/1815-5235/article/view/325631
- DOI: https://doi.org/10.22363/1815-5235-2020-16-5-361-379
- ID: 325631
Citar
Texto integral
Resumo
The aim of the work is to perform a comparative analysis of the results of analyzing arbitrarily loaded shells of revolution using finite element method in various formulations, namely, in the formulation of the displacement method and in the mixed formulation. Methods. To obtain the stiffness matrix of a finite element a functional based on the equality of the actual work of external and internal forces was applied. To obtain the deformation matrix in the mixed formulation the functional obtained from the previous one by replacing the actual work of internal forces in it with the difference of the total and additional work was used. Results. In the formulation of the displacement method for an eight-node hexahedral solid finite element, displacements and their first derivatives are taken as the nodal unknowns. Approximation of the displacements of the inner point of the finite element was carried out through the nodal unknowns on the basis of the Hermite polynomials of the third degree. For a finite element in the mixed formulation, displacements and stresses were taken as nodal unknowns. Approximation of the target finite element values through their nodal values in the mixed formulation was carried out on the basis of trilinear functions. It is shown on a test example that a finite element in the mixed formulation improves the accuracy of the strength parameters of the shell of revolution stress-strain state.
Sobre autores
Natalia Gureeva
Financial University under the Government of the Russian Federation
Autor responsável pela correspondência
Email: aup-volgau@yandex.ru
Doctor of Physics and Mathematics, Associate Professor of the Department of Mathematics
49 Leningradskii Ave, Moscow, 125993, Russian FederationYuriy Klochkov
Volgоgrad State Agrarian University
Email: aup-volgau@yandex.ru
Doctor of Technical Sciences, Professor, Head of the Department of Higher Mathematics of the Electric Power and Energy Faculty
26 Universitetskii Ave, Volgograd, 400002, Russian FederationAnatoly Nikolaev
Volgоgrad State Agrarian University
Email: aup-volgau@yandex.ru
Doctor of Technical Sciences, Professor of the Applied Geodesy, Environmental Engineering and Water Use Department of the Ecology and Melioration Faculty
26 Universitetskii Ave, Volgograd, 400002, Russian FederationVladislav Yushkin
Volgоgrad State Agrarian University
Email: aup-volgau@yandex.ru
Candidate of Technical Sciences, Associate Professor of the Applied Geodesy, Environmental Engineering and Water Use Department of the Ecology and Melioration Faculty
26 Universitetskii Ave, Volgograd, 400002, Russian FederationBibliografia
- Galimov K.Z., Paimushin V.N. Teoriya obolochek slozhnoj geometrii [Theory of shells of complex geometry]. Kazan: Kazan University Publ.; 1985. (In Russ.)
- Petrov V.V. Nelinejnaya inkremetal'naya stroitel'naya mekhanika [Nonlinear incremental structural mechanics]. Vologda: Infra-Inzheneriya Publ.; 2014. (In Russ.)
- Bate K.-U. Metody konechnyh elementov [Finite Element Methods]. Moscow: Fizmatlit Publ.; 2010. (In Russ.)
- Kosytsyn S.B., Akulich V.Y. Stress-strain state of a cylindrical shell of a tunnel using construction stage analysis. Komunikacie. 2019;21(3):72–76.
- Kosytsyn S.B., Akulich V.Y. The definition of the critical buckling load beam model and two-dimensional model of the round cylindrical shell that interact with the soil. Structural Mechanics of Engineering Constructions and Buildings, 2019;15(4):291–298. (In Russ.)
- Kosytsyn S.B., Akulich V.Y. Numerical analysis of the account of the stages in the calculation of the shell together with the soil massif. International journal for computational civil and structural engineering. 2019:15(3):84–95. (In Russ.)
- Golovanov A.I., Tyuleneva O.N., Shigabutdinov A.F. Metod konechnyh elementov v statike i dinamike tonkostennyh konstrukcij [Finite element method in statics and dynamics of thin-walled structures]. Moscow: Fizmatlit Publ.; 2006. (In Russ.)
- Kiselev A.P., Gureeva N.A., Kiseleva R.Z. Raschet mnogoslojnoj obolochki s ispol'zovaniem ob"emnogo konechnogo elementa [Calculation of a multilayer shell using a volumetric finite element]. Izvestia VSTU [Bulletin of the Volgograd State Technical University]. 2010;4(4):125–128. (In Russ.)
- Kayumov R.A. K resheniyu zadach neodnorodnoj teorii uprugosti metodom konechnyh elementov [To the solution of problems of the heterogeneous theory of elasticity by the finite element method]. Trudy Vtoroi Vserossiiskoi nauchnoi konferentsii [Proceedings of the Second All-Russian Scientific Conference] (June 1–3, 2005). Part 1. Matematicheskie modeli mekhaniki, prochnost' i nadezhnost' konstruktsii. Matematicheskoe modelirovanie i kraevedcheskie zadachi [Mathematical models of mechanics, strength and reliability of structures. Mathematical modeling and local history problems]. Samara: SamGTU Publ.; 2005. p. 143–145. (In Russ.)
- Kiselev A.P., Kiseleva R.Z., Nikolaev A.P. Account of the shift as rigid body of shell of revolution axially symmetric loaded on the base of FEM. Structural Mechanics of Engineering Constructions and Buildings. 2014;(6):59–64. (In Russ.)
- Klochkov Yu.V., Nikolaev A.P., Ischanov T.R. Finite element analysis of stress-strain state of shells of revolution with taking into account the strain of transversal shearing. Structural Mechanics of Engineering Constructions and Buildings. 2016;(5):48–56. (In Russ.)
- Klochkov Yu.V., Nikolaev A.P., Sobolevskaya T.A., Klochkov M.Yu. Comparative analysis of efficiency of use of finite elements of different dimensionality in the analysis of the stress-strain state of thin shells. Structural Mechanics of Engineering Constructions and Buildings. 2018;14(6):459–466. (In Russ.)
- Gureeva N.A., Arkov D.P. Flat problem of theory of jump in base method of final elements in mixed understanding in account physical nonlinearity. Structural Mechanics of Engineering Constructions and Buildings. 2010; (4):32–36. (In Russ.)
- Beirão da Veiga L., Lovadina C., Mora D. A virtual element method for elastic and inelastic problems on polytope meshes. Computer methods in applied mechanics and engineering. 2015;(295):327–346.
- Klochkov Y.V., Nikolaev A.P., Vakhnina O.V., Kiseleva T.A. Stress-strain analysis of a thin-shell part of fuselage using a triangular finite element with Lagrange multipliers. Russian Aeronautics. 2016;59(3):316–323.
- Klochkov Y.V., Nikolaev A.P., Vakhnina O.V. Calculation of rotation shells using finite triangular elements with Lagrange multipliers in variative approximation of displacements. Journal of Machinery Manufacture and Reliability. 2016;45(1):51–58.
- Magisano D., Liabg K., Garcea G., Leonetti L., Ruess M. An efficient mixed variational reduced order model formulation for nonlinear analyses of elastic shells. International Journal for Numerical Methods in Engineering, 2018;113(4):634–655.
- Gureeva N.A., Klochkov Yu.V., Nikolaev A.P. Analysis of a shell of revolution subjected to axisymmetric loading taking into account geometric nonlinearity on the basis of the mixed finite element method. Russian Aeronautics. 2014;57(3):232–239.
- Gureeva N.A., Nikolaev A.P., Yushkin V.N. Comparative analysis of finite element formulations at plane loading of an elastic body. Structural Mechanics of Engineering Constructions and Buildings. 2020;16(2):139–145. (In Russ.)
- Ignatyev V.A., Ignatyev A.V. Plane problem solution of elasticity theory by the finite element method in the form of classical mixed method. Bulletin of the Volgograd State University of Architecture and Civil Engineering. Series: Construction and Architecture. 2013;31–2(50):337–343. (In Russ.)
- Ignatyev A.V., Ignatyev V.A., Gamzatova E.A. Analysis of bending plates with unilateral constraints through the finite element method in the form the of classical mixed method. News of Higher Educational Institutions. Construction. 2018;8(716):5–14. (In Russ.)
- Ignatyev A.V., Ignatyev V.A., Gamzatova E.A. Analysis of bending problem of plates with rigid inclusions or holes by the FEM in the form of a classical mixed method. News of Higher Educational Institutions. Construction. 2017;9(705):5–14. (In Russ.)
- Leonetti D., Ruess M. An efficient mixed variational reduced order model formulation for non-linear analyses of elastic shells. Int. J. Numer. Meth. Engng. 2017:1–24.
- Chi H., Beirao da Veiga L., Paulino G.H. Some basic formulations of the virtual element method (VEM) for finite deformations. Comput. Methods Appl. Engng. 2017;318:148–192. https://doi.org/10.1016/j.cma.2016.12.020
- Artioli E., de Miranda S., Lovadina C., Patruno L. A stress/displacement virtual element method for plane elasticity problems. Comput. Methods Appl. Engng. 2017;325:155–174. doi: 10.1016/j.cma.2017.06.036.
Arquivos suplementares
