Analytical Calculation of Cylindrical Shells in the Form of Second-Order Algebraic Surfaces
- 作者: Krivoshapko S.N.1
-
隶属关系:
- RUDN University
- 期: 卷 20, 编号 6 (2024)
- 页面: 567-592
- 栏目: Analysis of thin elastic shells
- URL: https://journals.rcsi.science/1815-5235/article/view/325864
- DOI: https://doi.org/10.22363/1815-5235-2024-20-6-567-592
- EDN: https://elibrary.ru/CYGRSH
- ID: 325864
如何引用文章
全文:
详细
When choosing the shape of a shell, one should strive for the boundary conditions to ensure momentless behavior of the shell. Second-order algebraic surfaces include three degenerate surfaces: parabolic, elliptic, and hyperbolic cylindrical surfaces, and two surfaces derived from them: circular cylindrical surface and cylindrical surface with incomplete ellipse in cross-section. These five surfaces are the objects of this research. For the first time, comparative static analysis of the five shells under a load of self-weight type is performed using the momentless shell theory. The explicit formulae for the determination of three internal membrane forces are obtained. It is shown that the parabolic cylindrical shell and the cylindrical shell with incomplete ellipse in cross-section perform better within the momentless shell theory. The constraints for the application of the momentless theory obtained earlier by other authors are confirmed. For the first time, a system of three partial differential equations with respect to the displacements of middle surfaces of the five cylindrical shells given in previously unused curvilinear coordinates is derived. It is established that no studies dealt with the calculation of hyberbolic cylindrical shells so far. A brief review of publications on the analysis of strength, stability, dynamics, and application of the five considered cylindrical shells is given to clarify the directions of investigation of these five cylindrical shells.
作者简介
Sergey Krivoshapko
RUDN University
编辑信件的主要联系方式.
Email: sn_krivoshapko@mail.ru
ORCID iD: 0000-0002-9385-3699
SPIN 代码: 2021-6966
Doctor of Technical Sciences, Professor of the Department of Construction Technology and Structural Materials, Academy of Engineering
Moscow, Russia参考
- Lee Y.S. Review on the cylindrical shell research. Transactions of the Korean Society of Mechanical Engineers, A. 2009;33(1):1-26. http://doi.org/10.3795/KSME-A.2009.33.1.1
- Krivoshapko S.N. History of research and application of conical surfaces and shells. News of Higher Educational Institutions. Construction. 2024;12(792):123-143. (In Russ.) http://doi.org/10.32683/0536-1052-2024-792-12-123-143
- Mamieva I.A. Analytical surfaces for parametrical architecture in contemporary buildings and structures. Academia. Architecture and Construction. 2020;(1):150-165. (In Russ.) EDN: KNYKTY
- Gbaguidi Aisse G.L. Influence of the geometrical research of surfaces of revolution and translation surfaces on design of unique structures. Structural Mechanics of Engineering Constructions and Buildings 2019;15(4):308-314. http://doi.org/10.22363/1815-5235-2019-15-4-308-314
- Krivoshapko S.N. Optimal shells of revolution and main optimizations. Structural Mechanics of Engineering Constructions and Buildings. 2019;15(3):201-209. http://doi.org/10.22363/1815-5235-2019-15-3-201-209
- Novozhilov V.V., Chernikh K.F., Mikhailovskiy E.I. Linear Theory of Thin Shells. Leningrad: Politechnika Publ.; 1991. (In Russ.) ISBN 5-7325-0127-4
- Krivoshapko S.N., Ivanov V.N. Simplified selection of optimal shell of revolution. Structural Mechanics of Engineering Constructions and Buildings. 2019;15(6):438-448. http://doi.org/10.22363/1815-5235-2019-15-6-438-448
- Sahu R.R., Gupta P.K. Blast diffusion by different shapes of domes. Defense Science Journal. 2015;65(1):77-82. http://doi.org/10.14429/dsj.65.6908
- Tupikova E.M. Shells in the form of algebraic ruled surfaces on a rhombic base. Structural Mechanics of Engineering Constructions and Buildings. 2023;19(5):510-519. (In Russ.) http://doi.org/10.22363/1815-5235-2023-19-5-510-519
- Hayakawa K., Ohsaki M. Form generation of discrete piecewise developable surface and its interior boundaries using local gauss map. Summaries of Technical Papers of Annual Meeting. Architectural Institute of Japan, 2023;1:997-998. (In Japan.)
- Krivoshapko S.N. Shells, shell structures, and curvilinear erections in the form of algebraical surfaces of the second order. Structural Mechanics and Analysis of Constructions. 2024;6:2-18. (In Russ.) http://doi.org/10.37538/0039-2383.2024.6.2.18
- Rabinskiy L.N., Shoumova N.P., Zhavoronok S.I. Analytical mechanics of membrane shells: a review. Applied Mathematical Sciences. 2016;10(44):2189-2204. http://doi.org/10.12988/ams.2016.64158
- Olshevskiy A.A. Structural Mechanics of Shells. Bryansk, 2019. (In Russ.)
- Biderman V.L. Mechanics of Thin-Walled Structures. Statics. Moscow: Mashinostroenie Publ.; 1977. (In Russ.) Available from: https://dwg.ru/dnl/6392 (accessed: 02.05.2024).
- Krivoshapko S.N. Geometry of Ruled Surfaces with Cuspidal Edge and Linear Theory of Analysis of Tangential Developable Shells: Monograph. Moscow: RUDN Publ.; 2009. (In Russ.) ISBN 978-5-209-03087-4
- Novozhilov V.V. Analysis of Cylindrical Shells. Izv. AN SSSR. OTN. 1946;(6):803-816.
- Vlasov V.Z. General Shell Theory and its Application in Technics. Moscow; Leningrad: Gostehizdat Publ.; 1949.
- Chernikh K.F. Linear Theory of Shells. Part 1. Leningrad; 1962.
- Lurye A.I. Concentration of stresses around a hole on the surface of the circular cylinder. PMM. 1946;10(3):307-406.
- Prokopovich I.E., Slezinger I.N., Shteinberg M.V. Analysis of Thin Elastic Cylindrical Shells and Prizm Hipped Plate Structures. Kiev: Budivel’nik Publ.; 1967.
- Goldenveizer A.L. Theory of Elastic Thin Shells. New York: Published by Pergamon Press; 1961.
- Novozhilov V.V. Theory of Thin Shells. Leningrad: Sudpromgiz Publ.; 1962.
- Flügge W. Statik und Dynamik der Schalen. Springer-Verlag; 1957.
- Grigolyuk E.I., Kulikov G.M. General direction of development of the theory of multilayered shells. Mechanics of Composite Materials. 1988;2:231-241. https://doi.org/10.1007/BF00608158
- Slezinger I.N. Matrix Form of Analysis of Elastic Cylindrical Shells and Hipped Plate Structures. The Fifth AllUnion Conference on Theory of Plates and Shells. Moscow: Nauka Publ.; 1965.
- Yokoo Y., Nakamura T., Matsui T. Limit analysis of shallow parabolic cylindrical shells. Transactions of the Architectural Institute of Japan. 1964;106:10-19. https://doi.org/10.3130/aijsaxx.106.0_10
- Krivoshapko S.N., Christian A. Bock Hyeng, Mamieva I.A. Chronology of erection of the earliest reinforced concrete shells. International Journal of Research and Reviews in Applied Sciences. 2014;18(2):95-108. EDN: UVEJCD
- Currà E., Giannetti I., Russo M. Self-supporting thin shells in Italy. Space and structure of the industrial buildings (1930-1970). Informes de la Construcción. 2024;76(575):6893. https://doi.org/10.3989/ic.6893
- Krasic S. Geometrijske Površi u Arhitekturi. Gradevinsko-arhitektonski fakultet Univerzitet u Nišu; 2012. ISBN 978-86-88601-02-3
- Polański S., Pianowski L. Surface development in technology. Computer-Aided Design. Warsaw: Wydawnictwo Naukowe PWN; 2001. (In Polish) ISBN 83-01-13362-7
- Lopatin A.V., Morozov E.V., Shatov A.V. Buckling and vibration of composite lattice elliptical cylindrical shells. Proceedings of the Institution of Mechanical Engineers. Part L: Journal of Materials Design and Applications. 2019;233(7): 1255-1266. http://doi.org/10.1177/1464420717736549
- Bakusov P.A., Semenov A.A. Analysis of the stability of the computational algorithm to a change in the geometric parameters of cylindrical shell structures. PNRPU Mechanics Bulletin. 2021;1:12-21. (In Russ.) http://doi.org/10.15593/perm.mech/2021.1.02
- Dyachenko I.A., Mironov A.A., Sverdlik Yu.M. Comparative analysis of theories and finite-element models of calculations of natural vibrations of cylindrical shells. Transportnie Sistemy. 2019;3(10):55-63. (In Russ.) http://doi.org/10.46960/62045_2019_3_55
- Orlov А.S., Rubtsova Е.G., Shcheglov А.S. Analysis of deformations of cylindrical vaulted roofing of religious buildings. Russian Journal of Building Construction and Architecture. 2022;3(55):109-120. http://doi.org/10.36622/VSTU. 2022.55.3.011
- Monahov V.A. Theory of Plates and Shells. Penza: PGUAS; 2016. (In Russ.)
- Blaauwendraad J., Hoefakker J.H. Application of membrane theory to circular cylindrical shells. Structural Shell Analysis. Solid Mechanics and Its Applications. 2014;200:29-50. https://doi.org/10.1007/978-94-007-6701-0_4
- Lekomtsev S.V. Finite-element algorithms for calculation of natural vibrations of three-dimensional shells. Computational continuum mechanics. 2012;5(2):233-243. (In Russ.) http://doi.org/10.7242/1999-6691/2012.5.2.28
- Bochkarev S.A., Lekomtsev S.V., Matveenko V.P. Aeroelastic stability of cylindrical shells with elliptical crosssection. Mechanics of Solids. 2020;55(5):728-736. (In Russ.) http://doi.org/10.31857/S0572329920050049
- Sahu R., Kumar B., Shrotriya D. Dynamic study of parabolic cylindrical shell: A parametric study. International Journal of Trend in Scientific Research and Development.2021;5(4):1545-1548. Available from: www.ijtsrd.com/papers/ ijtsrd43638.pdf (accessed: 02.05.2024).
- Robles S.I., Ortega N.F. Damage evaluation in shells from changes in its static parameters. The Open Construction and Building Technology Journal. 2011;5:182-189. http://doi.org/10.2174/1874836801105010182
- Li H., Guo D., Tzou H. Light-induced vibration control of parabolic cylindrical shell panels. Journal of Intelligent Material Systems and Structures. Engineering, Materials Science, Physics. 2017;28(20):2947-2958. http://doi.org/10.1177/ 1045389X17704912
- Ivanova S.S., Umnova O.V. A study of the influence of the steel grid shell’s height to its weight and deflection. Diary of Science. 2017;12(12):16. (In Russ.) EDN: YMELPK
- Sehlström A., Olsson K., Williams C. Should Torroja’s prestressed concrete Alloz aqueduct be thought of as a beam or a shell? Engineering Structures. 2022;264:114425. http://doi.org/10.1016/j.engstruct.2022.114425
- Kosytsyn S.B., Akulich V.Yu. Numerical analysis of cylindrical shell stability inter-acting with inhomogeneous soil. Structural Mechanics of Engineering Constructions and Buildings. 2021;17(6):608-616. (In Russ.) http://doi.org/10.22363/ 1815-5235-2021-17-6-608-616
- Rustamova M.A. Determination of natural vibration frequencies of reinforced cylindrical shell. Structural Mechanics of Engineering Constructions and Buildings. 2021;17(6):628-638. (In Russ.) http://doi.org/10.22363/1815-5235-2021-17-6-628-638
- Hudoley A.L., Baran O.A., Goman A.M. Determination of radial displacements of cylindrical shell under thermoforced loading. Vestnik of Brest state technical university. Series: Mechanical engineering. 2006;(4):9-13. (In Russ.) Available from: https://rep.bstu.by/handle/data/12497 (accessed: 02.05.2024).
- Montes R.O.P., Silva F.M.A., Pedroso L.J. Free vibration analysis of a claim cylindrical shell with internal and external fluid interaction. Journal of Fluids and Structures. 2024;125:104079. https://doi.org/10.1016/j.jfluidstructs.2024. 104079
- Firsanov V.V., Vo A.H. Investigation of strengthened cylindrical shells under action of local load on refined theory. Trudy MAI. 2018;(102). (In Russ.) EDN: YQONHV
- Choudhary D.K., Jha A.K., Parihar R.S., Misra R., Udeniyan A. A parametric study of skewed parabolic cylindrical shell at 0o and 30o by staad pro software. International Journal of Research Publication and Reviews. 2024;5(7):2847-2855. ISSN 2582-7421
- Rai R., Pendharkar U. Computer aided analysis of multiple cylindrical shell structure using different parameters. International Journal of Engineering Research & Technology. 2012;1(3):1-7. ISSN: 2278-0181
- Nemeth M.P., Oterkus E., Madenci E. Stress analysis of composite cylindrical shells with an elliptical cutout. Journal of Mechanics of Materials and Structures. 2007;2(4):695-727. http://doi.org/10.2140/jomms.2007.2.695
补充文件
