Elastic-plastic analysis of shells by variational method on the basis of high-degree polynomials

Capa

Citar

Texto integral

Resumo

The purpose of the research is to develop a variational method for calculation of three-dimensional structures based on approximating functions with finite carriers of an arbitrary degree of approximation. In the early papers of the authors, the method was presented in a linear formulation, and the possibility of calculating both three-dimensional compound structures and thin shells was shown. This paper proposes an algorithm for strength calculation of thick and thin shells with elastic-plastic deformations. The geometry of shells is described in a curvilinear orthogonal coordinate system, e.g., in cylindrical, spherical, or conical ones. The calculation method uses the basic equations of small elastic-plastic deformations for the curvilinear coordinate system. The calculation algorithm was based on a model of material with linear strengthening. To obtain a resolving system of nonlinear equations, the Lagrange variational principle is used. The problem is solved by means of iteration. The first iteration corresponds to a linear problem. At each iteration, after solving the system of equations, the intensities of deformations at each point of integration are calculated. These intensities of deformations are substituted into the matrices of elasticity at the following iterations. The process of iteration is characterized by recalculation of the elasticity matrix at each iteration in each integration point. The researche have shown a stable convergence of the process of iteration. A testing solution of elastic-plastic deformation problems of a thick pipe and a thin shell was carried out. The calculation results were in good agreement with the results obtained both by classical formulas for elastic plastic deformation and with the results of calculations in the Ansys Mechanical program.

Sobre autores

Farid Khayrullin

Kazan National Research Technological University

Email: x_farid@mail.ru
ORCID ID: 0000-0002-5455-6659

Doctor in Physics and Mathematics, Professor of the Department of Fundamentals of Structural Engineering and Applied Mechanics

Kazan, Russian Federation

Oleg Sakhbiev

Kazan National Research Technological University

Autor responsável pela correspondência
Email: somkazan@yandex.ru
ORCID ID: 0000-0003-1670-4013

PhD in Physics and Mathematics, Senior Lecturer, Department of Fundamentals of Structural Engineering and Applied Mechanics

Kazan, Russian Federation

Bibliografia

  1. Khayrullin F.S., Sakhbiev O.M. On the method of calculating three-dimensional structures of complex shape. Bulletin of Kazan Technological University. 2014;17(23):328–330. (In Russ.)
  2. Khayrullin F.S., Sakhbiev O.M. Computing orthotropic constructions using the variation method based on threedimensional functions with final carriers. PNRPU mechanics bulletin. 2017;2:195–207. (In Russ.) https://doi.org/10.15593/perm.mech/2017.2.11
  3. Khairullin F.S., Sakhbiev O.M. On the use of a variational method based on approximating functions with finite carriers for calculating three-dimensional thin-walled structures. XII All-Russian Congress on fundamental problems of theoretical and applied Mechanics. Collection of works. In 4 volumes. Ufa. Publisher: Bashkir State University. 2019;3: 215–217. (In Russ.)
  4. Khayrullin F.S., Sakhbiev O.M. Calculation of the elastoplastic deformations by the variational method based on functions with finite carriers. Herald of Technological University. 2021;24(4):102–106. (In Russ.)
  5. Ashkeev Zh.A., Andreyachshenko V.A., Abishkenov M.Zh., Bukanov Zh.U. Determination of the stress state and the force of deformation of ball-shaped billets in a closed matrix. PNRPU mechanics bulletin. 2021;4:5–12. (In Russ.) https://doi.org/10.15593/perm.mech/2021.4.01
  6. Vatulyan A.O., Nesterov S.A., Yurov VO. Investigation of the stress-strain state of a hollow cylinder with a coating based on the gradient model of thermoelasticity. PNRPU mechanics bulletin. 2021;4:60–70. (In Russ.) https://doi.org/10.15593/perm.mech/2021.4.07
  7. Bogdanov N.P. Method of calculation of elastic-plastic torsion of cylindrical rods. Collection of articles of the XI International Scientific and practical Conference. Petrozavodsk. 2021;3:14–18. (In Russ.) EDN: GEWJKU
  8. Gureeva N.A., Klochkov Yu.V., Nikolaev A.P. Defining relations for nonlinear elastic bodies and their implementation in the calculation of axisymmetrically loaded shells of rotation based on a mixed FEM. Scientific notes of Kazan University. Series: Physical and mathematical Sciences. 2015;157(2):28–39. (In Russ.) EDN: UBGLNX
  9. Davydov R.L., Sultanov L.U., Abdrakhmanova A.I. On an algorithm for calculating large elastic-plastic deformations of FEM in the collection. Proceedings of the XI International Conference on Nonequilibrium Processes in Nozzles and Jets (NPNJ’2016), Alushta, May 25–31, 2016. Moscow: MAI Publ.; 2016:324–326. (In Russ.)
  10. Rybakov V.A., Kupchekov A.M., Bikbaeva N.A. Physical nonlinearity in the calculation of reinforced concrete elements in the collection: problems of ensuring the functioning and development of ground infrastructure of weapon systems complexes. Materials of the All-Russian Scientific and Technical Conference “Problems of ensuring the functioning and development of the ground infrastructure of weapons systems complexes”. Publishing house: Military Space Academy named after A.F. Mozhaisky. Saint-Petersburg. 2018;3:55–61. (In Russ.)
  11. Naizabekov A., Andreyachshenko V., Kliber J. Forming of microstructure of the Al–Si–Fe – Mn system alloy by equal channel angular pressing with backpressure. In: Conf. Proc. 21st International Conference on Metallurgy and Materials (Metal–2012), Brno, Czech Republic. 2012:391–395.
  12. Andreyachshenko V.A., Naizabekov A.B. Microstructural and mechanical characteristics of AlSiMnFe alloy processed by equal channel angular pressing. Metalurgija. 2016;55 (3):353–356.
  13. Dorofeev O.V., Kurdyumova L.N., Rodin N.N. Formation of gradient submicro- and nanocrystalline structures in bulk structural materials. Proceedings of the 3rd International Scientific and Technical Conference. Metallophysics, mechanics of materials, nanostructures and deformation processes. METALLDEFORM — 2009. In 2 volumes. Vol. 1. Samara; 2009:229–232. (In Russ.)
  14. De Faria C.G., Almeida N.G.S., Balzuweit K., Aguilar M.T.P., Cetlin P.R. The effect of initial strain in the severe plastic deformation of aluminum on the subsequent work hardening regeneration through low strain amplitude multidirectional forging. Materials Letters. 2021;290(1):129462. https://doi.org/10.1016/j.matlet.2021.129462
  15. Svyetlichnyy D.S., Majta J., Kuziak R., Muszka K. Experimental and modelling study of the grain refinement of Fe-30wt % Ni-Nb austenite model alloy subjected to severe plastic deformation process. Archives of Civil and Mechanical Engineering. 2021;21(1):1–14. https://doi.org/10.1007/s43452-021-00178-7
  16. Segal V. Review: Modes and Processes of Severe Plastic Deformation (SPD). Materials. 2018;11(7):1175. https://doi.org/10.3390/ma11071175
  17. Ashkeev Z.A., Andreyashchenko V.A., Abishkenov M.Zh., Bukanov Zh.U. Determination of the stress state and the force of deformation of ball-shaped billets in a closed matrix. PNRPU mechanics bulletin. 2021;4:5–12. (In Russ.) https://doi.org/10.15593/perm.mech/2021.4.01
  18. Ishlinskiy A.Yu., Ivlev D.D. Mathematical theory of plasticity. Moscow: Fizmatlit Publ.; 2003. (In Russ.)
  19. Dzhabrailov A.Sh., Nikolaev A.P., Klochkov Yu.V., Gureeva N.A., Ishchanov T.R. Nonlinear deformation of axisymmetrically loaded rotation shell based on fem with different variants of definitional equations. Izvestiya of Saratov university. Mathematics. Mechanics. Informatics. 2022;22(1):48–61. (In Russ.) https://doi.org/10.18500/1816-9791-2022-221-48-61
  20. Novatsky V. The Theory of elasticity. Moscow: Mir Publ.; 1975. (In Russ.)
  21. Novozhilov V.V. Theory of elasticity. Leningrad: Sudpromgiz Publ.; 1958. (In Russ.)
  22. Abovsky N.P., Andreev N.P., Deruga A.P. Variational principles of elasticity theory and shell theory. Moscow: Nauka Publ.; 1978. (In Russ.)
  23. Frolov A.V., Voevodin V.V., Konshin I.N., Teplov A.M. Investigation of the structural properties of the Cholesky decomposition algorithm: from long-known facts to new conclusions. Vestnik UGASTU. 2015;19(4):149–162. (In Russ.)

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».