The place and role of oral microflora in the pathogenesis of oral mucositis in malignant neoplasms (literature review)

Cover Page

Cite item

Full Text

Abstract

Background. Oral mucositis (OM) is one of the most frequent complications of systemic drug therapy of oncological diseases. Clinically, the disease manifests itself in the form of erythema and ulceration of the non-corneating mucous membrane. Although this condition is self-healing, it can affect the conduct of comprehensive antitumor treatment. Currently, the pathophysiological model of the development of OM is supplemented with new data obtained during studies of the oral microflora. Antitumor treatment can lead to changes in the composition of the resident oral microflora and it is quite possible that the changes that occur may affect the development of damage to the oral mucosa. The expansion of knowledge in this area allows researchers to look for new ways to include oral microbiota in OM management strategies.

Aim. To summarize and update the accumulated data regarding the role of the oral microbiota in the pathogenesis of OM in patients with malignant neoplasms.

Materials and methods. Literature search was performed in Medline, Cochrane Library, Elibrary and Pubmed, including publications demonstrating the current ability to assess the impact of the oral microbiome on OM, as well as developments in this area relating to OM management.

Results. In the review the current views on the position of the oral microbiome in the pathogenesis of OM were highlighted and the promising directions for the use of agents influencing the state of the oral microbiota in various strategies to control this disease were emphasised.

Conclusion. A better understanding of the pathogenesis of OM and the inclusion of new factors, such as the oral microbiome, into the picture of pathogenesis is likely to enable the formation of more effective management strategies for this disease in the future. This direction seems very promising, and developments in this area show promising results.

About the authors

Aleksander A. Zavyalov

State Research Center – Burnasyan Federal Medical Biophysical Center

Author for correspondence.
Email: azav06@mail.ru
ORCID iD: 0000-0003-1825-1871
SPIN-code: 5087-2394

D. Sci. (Med.), Prof.

Russian Federation, Moscow

Aleksandr I. Tyryshkin

State Research Center – Burnasyan Federal Medical Biophysical Center

Email: azav06@mail.ru
SPIN-code: 3473-9049

Clinical Resident

Russian Federation, Moscow

Valentina N. Olesova

State Research Center – Burnasyan Federal Medical Biophysical Center

Email: azav06@mail.ru
ORCID iD: 0000-0002-3461-9317
SPIN-code: 6851-5618

D. Sci. (Med.), Prof., State Research Center

Russian Federation, Moscow

Nataliya A. Pashchenko

State Research Center – Burnasyan Federal Medical Biophysical Center

Email: azav06@mail.ru
SPIN-code: 5056-4361

Graduate Student

 

Russian Federation, Moscow

Marina M. Gurkova

Sechenov First Moscow State Medical University (Sechenov University); Research and Production Center «Micromir»

Email: azav06@mail.ru
ORCID iD: 0000-0001-6473-9566
SPIN-code: 3473-9160

Master's student, Deputy General Director

Russian Federation, Moscow; Moscow

References

  1. Vera-Llonch M, Oster G, Ford CM, et al. Oral mucositis and outcomes of allogeneic hematopoietic stem-cell transplantation in patients with hematologic malignancies. Support Care Cancer. 2007;15(5):491-6. doi: 10.1007/s00520-006-0176-9
  2. Murphy BA, Beaumont JL, Isitt J, et al. Mucositis-related morbidity and resource utilization in head and neck cancer patients receiving radiation therapy with or without chemotherapy. J Pain Symptom Manage. 2009;38(4):522-32. doi: 10.1016/j.jpainsymman.2008.12.004
  3. Peterson DE, Srivastava R, Lalla RV. Oral mucosal injury in oncology patients: perspectives on maturation of a field. Oral Dis. 2015;21(2):133-41. doi: 10.1111/odi.12167
  4. Hong BY, Sobue T, Choquette L, et al. Chemotherapy-induced oral mucositis is associated with detrimental bacterial dysbiosis. Microbiome. 2019;7(1):66. doi: 10.1186/s40168-019-0679-5
  5. Sonis ST. New thoughts on the initiation of mucositis. Oral Dis. 2010;16(7): 597-600.
  6. Rice DH, Gill G. The effect of irradiation upon the bacterial flora in patients with head and neck cancer. Laryngoscope. 1979;89(11):1839-41. doi: 10.1288/00005537-197911000-00018
  7. Vanhoecke B, De Ryck T, Stringer A, et al. Microbiota and their role in the pathogenesis of oral mucositis. Oral Dis. 2015;21(1):17-30. doi: 10.1111/odi.12224
  8. Groeger S, Meyle J. Oral Mucosal Epithelial Cells. Front Immunol. 2019;10:208. doi: 10.3389/fimmu.2019.00208
  9. Li Y, Deng SL, Lian ZX, Yu K. Roles of Toll-Like Receptors in Nitroxidative Stress in Mammals Cells. 2019;8(6):576. doi: 10.3390/cells8060576
  10. Rauta PR, Samanta M, Dash HR, et al. Toll-like receptors (TLRs) in aquatic animals: signaling pathways, expressions and immune responses. Immunol Lett. 2014;158(1-2):14-24. doi: 10.1016/j.imlet.2013.11.013
  11. McClure R, Massari P. TLR-Dependent Human Mucosal Epithelial Cell Responses to Microbial Pathogens. Front Immunol. 2014;5. doi: 10.3389/fimmu.2014.00386
  12. Ji L, Hao S, Wang J, et al. Roles of Toll-Like Receptors in Radiotherapy- and Chemotherapy-Induced Oral Mucositis: A Concise Review. Front Cell Infect Microbiol. 2022;12:831387. doi: 10.3389/fcimb.2022.831387
  13. Nguyen S, Baker K, Padman BS, et al. Bacteriophage Transcytosis Provides a Mechanism To Cross Epithelial Cell Layers. mBio. 2017;8(6):e01874-17. doi: 10.1128/mBio.01874-17
  14. Vasconcelos RM, Sanfilippo N, Paster BJ, et al. Host-Microbiome Cross-talk in Oral Mucositis. J Dent Res. 2016;95(7):725-33. doi: 10.1177/0022034516641890
  15. Saunders DP, Epstein JB, Elad S, et al; Mucositis Study Group of the Multinational Association of Supportive Care in Cancer/International Society of Oral Oncology (MASCC/ISOO). Systematic review of antimicrobials, mucosal coating agents, anesthetics, and analgesics for the management of oral mucositis in cancer patients. Support Care Cancer. 2013;21(11):3191-207. doi: 10.1007/s00520-013-1871-y
  16. Laheij AM, van Loveren C, Deng D, de Soet JJ. The impact of virulence factors of Porphyromonas gingivalis on wound healing in vitro. J Oral Microbiol. 2015;7:27543.
  17. Laheij AM, de Soet JJ, von dem Borne PA, et al. Oral bacteria and yeasts in relationship to oral ulcerations in hematopoietic stem cell transplant recipients. Support Care Cancer. 2012;20(12):3231-40. doi: 10.1007/s00520-012-1463-2
  18. Sonis ST. The Chicken or the Egg? Changes in Oral Microbiota as Cause or Consequence of Mucositis During Radiation Therapy. EBioMedicine. 2017;18:7-8. doi: 10.1016/j.ebiom.2017.03.017
  19. Zhu XX, Yang XJ, Chao YL, et al. The Potential Effect of Oral Microbiota in the Prediction of Mucositis During Radiotherapy for Nasopharyngeal Carcinoma. EBioMedicine. 2017;18:23-31. doi: 10.1016/j.ebiom.2017.02.002
  20. De Ryck T, Vanlancker E, Grootaert C, et al. Microbial inhibition of oral epithelial wound recovery: potential role for quorum sensing molecules? AMB Express. 2015;5:27. doi: 10.1186/s13568-015-0116-5
  21. Hong CHL, Gueiros LA, Fulton JS, et al. Systematic Review of Basic Oral Care for the Management of Oral Mucositis in Cancer Patients and Clinical Practice Guidelines. Support Care Cancer. 2019;27(10):3949-67. doi: 10.1007/s00520-019-04848-4
  22. Cinausero M, Aprile G, Ermacora P, et al. New Frontiers in the Pathobiology and Treatment of Cancer Regimen-Related Mucosal Injury. Front Pharmacol. 2017;8:354. doi: 10.3389/fphar.2017.00354
  23. Clarkson JE. Interventions for treating oral mucositis for patients with cancer receiving treatment. The Cochrane Collaboration, 2010.
  24. Panebianco C, Latiano T, Pazienza V. Microbiota Manipulation by Probiotics Administration as Emerging Tool in Cancer Prevention and Therapy. Front Oncol. 2020;10:679. doi: 10.3389/fonc.2020.00679
  25. Perales-Puchalt A, Perez-Sanz J, Payne KK, et al. Frontline Science: Microbiota reconstitution restores intestinal integrity after cisplatin therapy. J Leukoc Biol. 2018;103(5):799-805. doi: 10.1002/JLB.5HI1117-446RR
  26. Kato S, Hamouda N, Kano Y, et al. Probiotic Bifidobacterium bifidum G9-1 attenuates 5-fluorouracil-induced intestinal mucositis in mice via suppression of dysbiosis-related secondary inflammatory responses. Clin Exp Pharmacol Physiol. 2017;44(10):1017-25. doi: 10.1111/1440-1681.12792
  27. Suez J, Zmora N, Zilberman-Schapira G, et al. Post-Antibiotic Gut Mucosal Microbiome Reconstitution Is Impaired by Probiotics and Improved by Autologous FMT. Cell. 2018;174(6):1406-23.e16. doi: 10.1016/j.cell.2018.08.047
  28. Cosseau C, Devine DA, Dullaghan E, et al. The commensal Streptococcus salivarius K12 downregulates the innate immune responses of human epithelial cells and promotes host-microbe homeostasis. Infect Immun. 2008;76(9):4163-75. doi: 10.1128/IAI.00188-08
  29. Wescombe PA, Hale JD, Heng NC, Tagg JR. Developing oral probiotics from Streptococcus salivarius. Future Microbiol. 2012;7(12):1355-71. doi: 10.2217/fmb.12.113
  30. Burton JP, Chilcott CN, Moore CJ, et al. A preliminary study of the effect of probiotic Streptococcus salivarius K12 on oral malodour parameters. J Appl Microbiol. 2006;100(4):754-64. doi: 10.1111/j.1365-2672.2006.02837.x
  31. Wang Y, Li J, Zhang H, et al. Probiotic Streptococcus salivarius K12 Alleviates Radiation-Induced Oral Mucositis in Mice. Front Immunol. 2021;12:684824. doi: 10.3389/fimmu.2021.684824
  32. Barr JJ, Auro R, Furlan M, et al. Bacteriophage adhering to mucus provide a non-host-derived immunity. Proc Natl Acad Sci U S A. 2013;110(26):10771-6. doi: 10.1073/pnas.1305923110

Copyright (c) 2023 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies