Genotyping of UGT1A1 and DPYD polymorphisms in patients with colorectal cancer. A review

Cover Page

Cite item

Full Text

Abstract

The main treatment regimen for patients with metastatic colorectal cancer is still cycle-based chemotherapy with fluoropyridines combined with oxaliplatin and/or irinotecan. The activity of these chemotherapeutic agents depends on a predominant specific metabolism pathway. Therefore, the genetic features of the patient become important as a prognostic factor for the occurrence and severity of adverse events during therapy. The review addresses current views about the mechanisms of toxic activity of irinotecan and fluoropyrimidines, analyzes the results of pharmacogenotyping of UGT1A1 and DPYD polymorphisms, and published studies assessing the relationship between genetic variants of these genes and the safety of chemotherapy. A significant role of the population component is noted both in the distribution of gene allele frequencies and in their phenotypic expression. For some polymorphisms of the DPYD gene, dose-dependent associations with the toxicity of 5-fluorouracil have been established. Nevertheless, they determine only 1–8% of cases out of 40–60% of patients with adverse events and DPD protein deficiency associated with other enzyme activity reduction mechanisms. The pharmacological significance of UGT1A1 genetic variations is associated with toxicity prediction and helps allocate patients for more effective high-dose irinotecan therapy. Data is presented on the pharmacogenotyping of these markers to establish the dose of drugs in various national guidelines. Currently, the heterogeneity of the available pharmacogenetic data leaves open the question of determining the most appropriate dosing strategies for irinotecan and fluoropyrimidines. The widespread introduction of UGT1A1 and DPYD genotyping into clinical practice balances the economic feasibility and predictive value of biomarkers. As pharmacogenomics evolves rapidly, more robust research would overcome existing hurdles and facilitate personalized drug dosage decisions.

About the authors

Natalia N. Timoshkina

National Medical Research Center for Oncology

Author for correspondence.
Email: timoshkinann@rnioi.ru
ORCID iD: 0000-0001-6358-7361
SPIN-code: 9483-4330
Scopus Author ID: 24077206000
ResearcherId: D-3876-2018

Candidate of Biological Sciences, head of the laboratory of molecular oncology

Russian Federation, Rostov-on-Don

Natalia A. Petrusenko

National Medical Research Center for Oncology

Email: petrusenko-natulya@mail.ru
ORCID iD: 0000-0001-7919-6111
SPIN-code: 5577-3805
Scopus Author ID: 57216917933
ResearcherId: AGE-9461-2022

junior researcher at the laboratory of molecular oncology

Russian Federation, Rostov-on-Don

Petr N. Gabrichidze

National Medical Research Center for Oncology

Email: q395273@yandex.ru

Candidate of Medical Sciences, oncologist

Russian Federation, Rostov-on-Don

Maria A. Cherkess

National Medical Research Center for Oncology

Email: tcherkes.maria@yandex.ru
SPIN-code: 8534-3323

oncologist

Russian Federation, Rostov-on-Don

Tatiana F. Pushkareva

National Medical Research Center for Oncology

Email: pushtatiana@yandex.ru
SPIN-code: 8047-6830

Oncologist, Department of Hematology

Russian Federation, Rostov-on-Don

Dmitry A. Savchenko

National Medical Research Center for Oncology

Email: doc.sav.rnd@gmail.com
ORCID iD: 0000-0002-2496-2728

oncologist

Russian Federation, Rostov-on-Don

References

  1. Феденко А.А., Трякин А. А., Жукова Л. Г., и др. Национальное руководство по лекарственному лечению злокачественных опухолей. Под ред. А. Д. Каприна. М. 2020 [Fedenko AA, Triakin AA, Zhukova LG, et al. Natsional’noe rukovodstvo po lekarstvennomu lecheniiu zlokachestvennykh opukholei. Pod red. AD Kaprina. Moscow, 2020 (in Russian)].
  2. Takano M, Sugiyama T. UGT1A1 polymorphisms in cancer: impact on irinotecan treatment. Pharmgenomics Pers Med. 2017;10:61-8. doi: 10.2147/PGPM.S108656
  3. Pfizer: CAMPTOSAR® (irinotecan HCl) Prescribing Information, 2014. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2014/020571s048lbl.pdf. Accessed: 30.11.2022.
  4. Tam VC, Rask S, Koru-Sengul T, Dhesy-Thind S. Generalizability of toxicity data from oncology clinical trials to clinical practice: Toxicity of irinotecan-based regimens in patients with metastatic colorectal cancer. Curr Oncol. 2009;16(6):13-20. doi: 10.3747/co.v16i6.426
  5. Shulman K, Cohen I, Barnett-Griness O, et al. Clinical implications of UGT1A1*28 genotype testing in colorectal cancer patients. Cancer. 2011;117(14):3156-62. doi: 10.1002/cncr.25735
  6. Karas S, Innocenti F. All You Need to Know About UGT1A1 Genetic Testing for Patients Treated With Irinotecan: A Practitioner-Friendly Guide. JCO Oncol Pract. 2022;18(4):270-7. doi: 10.1200/OP.21.00624
  7. Fuchs CS, Moore MR, Harker G, et al. Phase III comparison of two irinotecan dosing regimens in second-line therapy of metastatic colorectal cancer. J Clin Oncol. 2003;21(5):807-14. doi: 10.1200/JCO.2003.08.058
  8. Kweekel D, Guchelaar HJ, Gelderblom H. Clinical and pharmacogenetic factors associated with irinotecan toxicity. Cancer Treat Rev. 2008;34(7):656-69. doi: 10.1016/j.ctrv.2008.05.002
  9. Wasserman E, Myara A, Lokiec F, et al. Severe CPT-11 toxicity in patients with Gilbert’s syndrome: two case reports. Ann Oncol. 1997;8(10):1049-51. doi: 10.1023/A:1008261821434
  10. Williams JA, Hyland R, Jones BC, et al. Drug-drug interactions for UDP-glucuronosyltransferase substrates: a pharmacokinetic explanation for typically observed low exposure (AUCi/AUC) ratios. Drug Metab Dispos. 2004;32(11):1201-8. doi: 10.1124/dmd.104.000794
  11. Stingl JC, Bartels H, Viviani R, et al. Relevance of UDP-glucuronosyltransferase polymorphisms for drug dosing: A quantitative systematic review. Pharmacol Ther. 2014;14(1):92-116. doi: 10.1016/j.pharmthera.2013.09.002
  12. Cerny MA. Prevalence of Non-Cytochrome P450-Mediated Metabolism in Food and Drug Administration – Approved Oral and Intravenous Drugs: 2006-2015. Drug Metab Dispos. 2016;44(8):1246-52. doi: 10.1124/dmd.116.070763
  13. Meng CL, Zhao W, Zhong DN. Epigenetics and microRNAs in UGT1As. Hum Genomics. 2021;15(1):30. doi: 10.1186/s40246-021-00331-6
  14. Sara JD, Kaur J, Khodadadi R, et al. 5-fluorouracil and cardiotoxicity: a review. Ther Adv Med Oncol. 2018;10:1758835918780140. doi: 10.1177/1758835918780140
  15. Van Kuilenburg ABP, Meinsma R, Zoetekouw L, Van Gennip AH. Increased risk of grade IV neutropenia after administration of 5-fluorouracil due to a dihydropyrimidine dehydrogenase deficiency: high prevalence of the IVS14+1g>a mutation. Int J Cancer. 2002;101(3):253-8. doi: 10.1002/ijc.10599
  16. Johnson MR, Diasio RB. Importance of dihydropyrimidine dehydrogenase (DPD) deficiency in patients exhibiting toxicity following treatment with 5-fluorouracil. Adv Enzyme Regul. 2001;41:151-7. doi: 10.1016/s0065-2571(00)00011-x
  17. Mikhail SE, Sun JF, Marshall JL. Safety of capecitabine: a review. Expert Opin Drug Saf. 2010;9(5):831-41. doi: 10.1517/14740338.2010.511610
  18. Pallet N, Hamdane S, Garinet S, et al. A comprehensive population-based study comparing the phenotype and genotype in a pretherapeutic screen of dihydropyrimidine dehydrogenase deficiency. Br J Cancer. 2020;123(5):811-8. doi: 10.1038/s41416-020-0962-z
  19. Zhang X, Li L, Fourie J, et al. The role of Sp1 and Sp3 in the constitutive DPYD gene expression. Biochim Biophys Acta (BBA) – Gene Structure and Expression. 2006;1759(5):247-56. doi: 10.1016/j.bbaexp.2006.05.001
  20. Hirota T, Date Y, Nishibatake Y, et al. Dihydropyrimidine dehydrogenase (DPD) expression is negatively regulated by certain microRNAs in human lung tissues. Lung Cancer. 2012;77(1):16-23. doi: 10.1016/j.lungcan.2011.12.018
  21. Toren W, Ansari D, Andersson B, et al. Thymidylate synthase: a predictive biomarker in resected colorectal liver metastases receiving 5-FU treatment. Future Oncol. 2018;14(4):343-51. doi: 10.2217/fon-2017-0431
  22. Abbasian MH, Ansarinejad N, Abbasi B, et al. The Role of Dihydropyrimidine Dehydrogenase and Thymidylate Synthase Polymorphisms in Fluoropyrimidine-Based Cancer Chemotherapy in an Iranian Population. Avicenna J Med Biotechnol. 2020;12(3):157-64.
  23. Кит О.И., Максимов А. Ю., Дженкова Е. А., Тимошкина Н. Н. Роль молекулярно-генетических исследований в современной онкологии. Вестник Российской Академии медицинских наук. 2022;77(3):214-24 [Kit OI, Maksimov AYu, Dzhenkova EA, Timoshkina NN. The role of molecular genetic studies in current oncology. Annals of the Russian Academy of Medical Sciences. 2022;77(3):214-24 (in Russian)].
  24. Водолажский Д.И., Двадненко К. В., Тимошкина Н. Н., и др. Полиморфизм гена UGT1A1 у пациентов с колоректальным раком, живущих на Юге России: результаты пилотного исследования. Молекулярная медицина. 2017;15(1):61-4 [Vodolazhsky DI, Dvadnenko KV, Timoshkina NN, et al. UGT1A1 gene polymorphism in patients with colorectal cancer living in the South of Russia: results of a pilot study. Molecular Medicine. 2017;15(1):61-4 (in Russian)].
  25. Тимошкина Н.Н., Богомолова О. А., Жужеленко И. А., и др. Исследование полиморфизмов генов UGT1A1 и DPYD у пациентов с колоректальным раком. Сибирский онкологический журнал. 2018;17(6):49-56 [Timoshkina NN, Bogomolova OA, Zhuzhelenko IA, et al. Study of UGT1A1 and DPYD gene polymorphisms in patients with colorectal cancer. Siberian Journal of Oncology. 2018;17(6):49-56 (in Russian)]. doi: 10.21294/1814-4861-2018-17-6-49-56
  26. Chen X, Liu L, Guo Z, et al. UGT1A1 polymorphisms with irinotecan-induced toxicities and treatment outcome in Asians with Lung Cancer: a meta-analysis. Cancer Chemother Pharmacol. 2017;79(6):1109-17. doi: 10.1007/s00280-017-3306-9
  27. Zhang X, Yin JF, Zhang J, et al. UGT1A1*6 Polymorphisms are Correlated With Irinotecan-Induced Neutropenia: A Systematic Review and Meta-Analysis. Cancer Chemother Pharmacol. 2017;80(1):135-49. doi: 10.1007/s00280-017-3344-3
  28. Liu X, Cheng D, Kuang Q, et al. Association of UGT1A1*28 polymorphisms with irinotecan-induced toxicities in colorectal cancer: a meta-analysis in Caucasians. Pharmacogenomics J. 2014;14(2):120-9. doi: 10.1038/tpj.2013.10
  29. Yang Y, Zhou M, Hu M, et al. UGT1A1*6 and UGT1A1*28 polymorphisms are correlated with irinotecan-induced toxicity: A meta-analysis. Asia Pac J Clin Oncol. 2018;14(5):e479-89. doi: 10.1111/ajco.13028
  30. Cremolini C, Del Re M, Antoniotti C, et al. DPYD and UGT1A1 genotyping to predict adverse events during first-line FOLFIRI or FOLFOXIRI plus bevacizumab in metastatic colorectal cancer. Oncotarget. 2018;9(8):7859-66. doi: 10.18632/oncotarget.23559
  31. Hikino K, Ozeki T, Koido M, et al. Comparison of Effects of UGT1A1*6 and UGT1A1*28 on Irinotecan-Induced Adverse Reactions in the Japanese Population: Analysis of the Biobank Japan Project. J Hum Genet. 2019;64(12):1195-202. doi: 10.1038/s10038-019-0677-2
  32. Kimura K, Yamano T, Igeta M, et al. UGT1A1 Polymorphisms in Rectal Cancer Associated With the Efficacy and Toxicity of Preoperative Chemoradiotherapy Using Irinotecan. Cancer Sci. 2018;109(12):3934-42. doi: 10.1111/cas.13807
  33. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506. doi: 10.1016/S0140-6736(20)30183-5
  34. Li Y, Zheng H, Zhang X, et al. UGT1A1 Allele Test Not Only Minimizes the Toxicity But Also Maximizes the Therapeutic Effect of Irinotecan in the Treatment of Colorectal Cancer: A Narrative Review. Front Oncol. 2022;12:854478. doi: 10.3389/fonc.2022.854478
  35. Hishinuma E, Narita Y, Saito S, et al. Functional Characterization of 21 Allelic Variants of Dihydropyrimidine Dehydrogenase Identified in 1070 Japanese Individuals. Drug Metab Dispos. 2018;46(8):1083-90. doi: 10.1124/dmd.118.081737
  36. Meulendijks D, Henricks LM, Jacobs BAW, et al. Pretreatment serum uracil concentration as a predictor of severe and fatal fluoropyrimidine-associated toxicity. Br J Cancer. 2017;116(11):1415-24. doi: 10.1038/bjc.2017.94
  37. DPYD Gene. Cosmic. Available at: https://cancer.sanger.ac.uk/cosmic/gene/analysis?ln=DPYD#variants. Accessed: 30.11.2022.
  38. Etienne-Grimaldi MC, Boyer JC, Beroud C, et al. New advances in DPYD genotype and risk of severe toxicity under capecitabine. PLoS One. 2017;12(5):e0175998. doi: 10.1371/journal.pone.0175998
  39. Van Kuilenburg ABP, Meijer J, Tanck MWT, et al. Phenotypic and clinical implications of variants in the dihydropyrimidine dehydrogenase gene. Biochim Biophys Acta. 2016;1862(4):754-62. doi: 10.1016/j.bbadis.2016.01.009
  40. Sharma BB, Rai K, Blunt H, et al. Pathogenic DPYD Variants and Treatment-Related Mortality in Patients Receiving Fluoropyrimidine Chemotherapy: A Systematic Review and Meta-Analysis. Oncologist. 2021;26(12):1008-16. doi: 10.1002/onco.13967
  41. Dean L, Kane M. Fluorouracil Therapy and DPYD Genotype. 2016 [last updated 2021]. In: Pratt VM, Scott SA, Pirmohamed M, et al, editors. Medical Genetics Summaries [Internet]. Bethesda (MD): National Center for Biotechnology Information (US), 2012.
  42. Colon Cancer, Version 2.2021, NCCN Guidelines. National Comprehensive Cancer Network. 2021. Available at: https://www.nccn.org/professionals/physician_gls/pdf/colon.pdf. Accessed: 30.11.2022.
  43. Iwasa S, Muro K, Morita S, et al. Impact of UGT1A1 Genotype on the Efficacy and Safety of Irinotecan-Based Chemotherapy in Metastatic Colorectal Cancer. Cancer Sci. 2021;112(11):4669-78. doi: 10.1111/cas.15092
  44. Yoshino T, Arnold D, Taniguchi H, et al. Pan-Asian Adapted ESMO Consensus Guidelines for the Management of Patients With Metastatic Colorectal Cancer: A JSMO-ESMO Initiative Endorsed by CSCO, KACO, MOS, SSO and TOS. Ann Oncol Off J Eur Soc Med Oncol. 2018;29(1):44-70. doi: 10.1093/annonc/mdx738
  45. Reizine N, Vokes EE, Liu P, et al. Implementation of pharmacogenomic testing in oncology care (PhOCus): Study protocol of a pragmatic, randomized clinical trial. Ther Adv Med Oncol. 2020;12. doi: 10.1177/1758835920974118

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Metabolism of irinotecan.

Download (122KB)
3. Fig. 2. Metabolism of pyrimidines.

Download (83KB)
4. Fig. 3. ROC analysis *28 UGT1A1 test.

Download (40KB)

Copyright (c) 2023 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies