Current concepts of neuroendocrine cancer of the prostate: a clinical case and review of the literature

Cover Page

Cite item

Full Text

Abstract

Prostate cancer (PC) is a heterogeneous group of diseases that differ in their biological nature, clinical manifestations, and prognosis. A special variant among them is a neuroendocrine prostate cancer (NEPC). NEPC is a rare disease with unfavorable prognosis. The majority of patients with different NEPC variants die within 2 years after the diagnosis, despite the performed treatment. The distinctive features of NEPC are the patterns of metastasis in the form of a tendency to involve internal organs and extra regional lymph nodes, lytic bone lesions; high rates (up to 6 months) of clinical and radiological disease progression against the background of androgen-deprivation therapy; expression of serological markers and their high content in peripheral blood. The reasons of the aggressive behavior of NEPC consists in molecular and genetic events in cells, leading to realization of androgen-independent mechanisms of proliferation as a result of the AURKA-mediated neuroendocrine differentiation of tumor cells, early loss of function of p53 and Rb1 oncosuppressors, and low expression of androgen receptors. In every tenth case of NEPC, these molecular changes are response of prostatic adenocarcinoma to androgen-deprivation therapy. The described clinical case demonstrates the differences of biological behavior of these cancer variants and their sensitivity to various variants of drug treatment. Our case also illustrates possible difficulties of differential diagnostics of prostatic adenocarcinoma with various variants of neuroendocrine cancer, especially with adenocarcinoma with foci of neuroendocrine differentiation. The complexity of management of patients with NEPC are exacerbated by insufficient coverage of this problem: the existing data on the management of patients suffering from various variants of NEPC are limited by descriptions of clinical cases, literature reviews and few phases I–II clinical studies. All this makes it necessary to thoroughly study and describe each case of NEPC.

About the authors

Grigoriy A. Chizh

Petrov National Medicine Research Center of Oncology

Author for correspondence.
Email: ya.grisha234@yandex.ru
ORCID iD: 0000-0002-4979-3246

Medical Resident

Russian Federation, Saint Petersburg

Yuliya A. Tyutrina

Saint Petersburg State Pediatric Medical University

Email: ya.grisha234@yandex.ru
ORCID iD: 0000-0003-4279-9933

Medical Resident

Russian Federation, Saint Petersburg

Svetlana A. Protsenko

Petrov National Medicine Research Center of Oncology

Email: ya.grisha234@yandex.ru
ORCID iD: 0000-0001-6822-9467

D. Sci. (Med.), Prof.

Russian Federation, Saint Petersburg

Ernest S. Dzhelialov

Saint Petersburg State University

Email: ya.grisha234@yandex.ru
ORCID iD: 0000-0002-2571-243X

oncologist

Russian Federation, Saint Petersburg

Dilorom H. Latipova

Petrov National Medicine Research Center of Oncology; Saint Petersburg State Pediatric Medical University

Email: ya.grisha234@yandex.ru
ORCID iD: 0000-0002-8906-0370

oncologist

Russian Federation, Saint Petersburg; Saint Petersburg

References

  1. Abbas F, Civantos F, Benedetto P, et al. Small cell carcinoma of the bladder and prostate. Urology. 1995;46(5):617-30.
  2. Сивков А.В., Кешишев Н.Г., Ефремов Г.Д., и др. Нейроэндокринная дифференцировка рака предстательной железы, что нового? Экспериментальная и клиническая урология. 2015;3:22-30 [Sivkov AV, Keshishev NG, Efremov GD, et al. Neiroendokrinnaia differentsirovka raka predstatel'noi zhelezy, chto novogo? Eksperimental'naia i klinicheskaia urologiia. 2015;3:22-30 (in Russian)].
  3. Beltran H, Demichelis F. Therapy considerations in neuroendocrine prostate cancer: what next? Endocr Relat Cancer. 2021;28(8):T67-78. doi: 10.1530/ERC-21-0140
  4. Deng X, Liu H, Huang J, et al. Ionizing radiation induces prostate cancer neuroendocrine differentiation through interplay of CREB and ATF2: Implications for disease progression. Cancer Res. 2008;68:9663-70. doi: 10.1158/0008-5472.CAN-08-2229
  5. Patel GK, Chugh N, Tripathi M. Neuroendocrine Differentiation of Prostate Cancer – An Intriguing Example of Tumor Evolution at Play. Cancers (Basel). 2019;11(10):1405.
  6. Zhang Q, Han Y, Zhang Y, et al. Treatment-Emergent Neuroendocrine Prostate Cancer: A Clinicopathological and Immunohistochemical Analysis of 94 Cases. Front Oncol. 2021;10:571308. doi: 10.3389/fonc.2020.571308
  7. Epstein JI, Amin MB, Beltran H, et al. Proposed morphologic classification of prostate cancer with neuroendocrine differentiation. Am J Surg Pathol. 2014;38(6):756-67.
  8. Beltran H, Tomlins S, Aparicio A, et al. Aggressive variants of castration-resistant prostate cancer. Clin Cancer Res. 2014;20(11):2846-50. doi: 10.1158/1078-0432.CCR-13-3309
  9. Аббасова Д.В. Нейроэндокринные опухоли редких локализаций. Дис. … канд. мед. наук. М., 2020 [Abbasova DV. Neiroendokrinnye opukholi redkikh lokalizatsii. Dis. … kand. med. nauk. Moscow, 2020 (in Russian)].
  10. Di Sant'Agnese PA. Neuroendocrine cells of the prostate and neuroendocrine differentiation in prostatic carcinoma: a review of morphologic aspects. Urology. 1998;51(5A Suppl.):121-4. doi: 10.1016/s0090-4295(98)00064-8
  11. Chughtai B, Forde J, Thomas D, et al. Benign prostatic hyperplasia. Nat Rev Dis Primers. 2016;2:16031.
  12. Abida W, Cyrta J, Heller G, et al. Genomic correlates of clinical outcome in advanced prostate cancer. Proc Natl Acad Sci USA. 2019;116(23):11428-36.
  13. Beltran H, Rickman DS, Park K, et al. Molecular Characterization of Neuroendocrine Prostate Cancer and Identification of New Drug Targets. Cancer Discov. 2011;1(6): 487-95. doi: 10.1158/2159-8290.CD-11-0130
  14. Aggarwal R, Huang J, Alumkal JJ, et al. Clinical and Genomic Characterization of Treatment-Emergent Small-Cell Neuroendocrine Prostate Cancer: A Multi-institutional Prospective Study. J Clin Oncol. 2018;36(24):2492-503.
  15. Zhou H, Kuang J, Zhong L, et al. Tumour amplified kinase STK15/BTAK induces centrosome amplification, aneuploidy and transformation. Nat Genet. 1998;20:189-93.
  16. D`Assoro AB, Haddad T, Galanis E. Aurora-A Kinase as a Promising Therapeutic Target in Cancer. Front Oncol. 2016;5:295.
  17. Terry S, Beltran H. The Many Faces of Neuroendocrine Differentiation in Prostate Cancer Progression. Published online 2014 Mar 25. Prepublished online 2014 Mar 3.
  18. Wu CH, Lan YJ, Wang CH, Wu MS. Hypercalcemia in prostate cancer with positive neuron-specific enolase stain. Ren Fail. 2004;26(3):325-7.
  19. Hindson DA, Knight LL, Ocker JM. Small-cell carcinoma of prostate. Transient complete remission with chemotherapy. Urology. 1985;26:182-4.
  20. Bhandari R, Vengaloor TT, Giri S, et al. Small Cell Carcinoma of the Prostate: A Case Report and Review of the Literature. Cureus. 2020;12(2):e7074.
  21. Furtado P, Lima MV, Nogueira C, et al. Review of small cell carcinomas of the prostate. Prostate Cancer. 2011;2011:543272.
  22. Amato RJ, Logothetis CJ, Hallinan R, et al. Chemotherapy for small cell carcinoma of prostatic origin. J Urol. 1992;147:935-7.
  23. Papandreou CN, Daliani DD, Thall PF, et al. Results of a phase II study with doxorubicin, etoposide, and cisplatin in patients with fully characterized small-cell carcinoma of the prostate. J Clin Oncol. 2002;20:3072-80.
  24. Hager S, Ackermann CJ, Joerger M, et al. Anti-tumour activity of platinum compounds in advanced prostate cancer – a systematic literature review. Ann Oncol. 2016;27(6):975-84. doi: 10.1093/annonc/mdw156
  25. Conteduca V, Oromendia C, Eng K, et al. Clinical features of neuroendocrine prostate cancer. Eur J Cancer. 2019;121:7-18. doi: 10.1016/j.ejca.2019.08.011
  26. Krook JE, Jett JR, Little C. A Phase I-II Study of Sequential Infusion VP-16 and Cisplatin Therapy in Advanced Lung Cancer. Am J Clin Oncol. 1989;12:114-7. doi: 10.1097/00000421-198904000-00005
  27. Moertel CG, Kvols LK, O’Connell MJ, Rubin J. Treatment of neuroendocrine carcinomas with combined etoposide and cisplatin. Evidence of major therapeutic activity in the anaplastic variants of these neoplasms. Cancer. 1991;68:227-32.
  28. Caubet M, Dobi E, Pozet A, et al. Carboplatin-etoposide combination chemotherapy in metastatic castration-resistant prostate cancer: A retrospective study. Mol Clin Oncol. 2015;6:1208-12. doi: 10.3892/mco.2015.628
  29. Fjällskog ML, Granberg DP, Welin SL, et al. Treatment with cisplatin and etoposide in patients with neuroendocrine tumors. Cancer. 2001;92:1101-7.
  30. Horn L, Mansfield AS, Szczęsna A, et al; IMpower133 Study Group. First-Line Atezolizumab plus Chemotherapy in Extensive-Stage Small-Cell Lung Cancer. N Engl J Med. 2018;379:2220-9.
  31. Petrylak DP, Tangen CM, Hussain MH, et al. Docetaxel and Estramustine Compared with Mitoxantrone and Prednisone for Advanced Refractory Prostate Cancer. N Engl J Med. 2004;351:1513-20.
  32. Tannock IF, De Wit R, Berry WR, et al. Docetaxel plus Prednisone or Mitoxantrone plus Prednisone for Advanced Prostate Cancer. N Engl J Med. 2004;351:1502-12.
  33. Smyth J, Smith I, Sessa C, et al. Activity of docetaxel (Taxotere) in small cell lung cancer. The Early Clinical Trials Group of the EORTC. Eur J Cancer. 1994;30:1058-60. doi: 10.1016/0959-8049(94)90455-3.
  34. Hesketh PJ, Crowley JJ, Burris HA, et al. Evaluation of docetaxel in previously untreated extensive-stage small cell lung cancer: A Southwest Oncology Group phase II trial. Cancer J Sci Am. 1999;5:237-41. PMID: 10439170.
  35. Aparicio AM, Harzstark AL, Corn PG, et al. Platinum-Based Chemotherapy for Variant Castrate-Resistant Prostate Cancer. Clin Cancer Res. 2013;19:3621-30. doi: 10.1158/1078-0432.CCR-12-3791
  36. Corn PG, Heath E, Zurita A, et al. Cabazitaxel plus carboplatin for the treatment of men with metastatic castration-resistant prostate cancers: A randomised, open-label, phase 1–2 trial. Lancet Oncol. 2019;20:1432-43.
  37. Aggarwal R, Huang J, Alumkal JJ, et al. Clinical and Genomic Characterization of Treatment-Emergent Small-Cell Neuroendocrine Prostate Cancer: A Multi-institutional Prospective Study. J Clin Oncol. 2018;36:2492-503.
  38. Guedes LB, Antonarakis ES, Schweizer MT, et al. MSH2 Loss in Primary Prostate Cancer. Clin Cancer Res. 2017;23(22):6863-74.
  39. Wagner DG, Gatalica Z, Lynch HT, et al. Neuroendocrine-Type Prostatic Adenocarcinoma with Microsatellite Instability in a Patient With Lynch Syndrome. Int J Surg Pathol. 2010;18:550-3.
  40. Puca L, Gayvert K, Sailer V, et al. Delta-like protein 3 expression and therapeutic targeting in neuroendocrine prostate cancer. Sci Transl Med. 2019;11:eaav0891.
  41. Rudin CM, Pietanza MC, Bauer TM, et al. Rovalpituzumab tesirine, a DLL3-targeted antibody-drug conjugate, in recurrent small-cell lung cancer: a first-in-human, first-in-class, open-label, phase 1 study. Lancet Oncol. 2017;18(1):42-51. doi: 10.1016/S1470-2045(16)30565-4
  42. Spetsieris N, Boukovala M, Patsakis G, et al. Neuroendocrine and Aggressive-Variant Prostate Cancer. Cancers (Basel). 2020;12(12):3792.
  43. Fléchon A, Pouessel D, Ferlay C, et al. Phase II study of carboplatin and etoposide in patients with anaplastic progressive metastatic castration-resistant prostate cancer (mCRPC) with or without neuroendocrine differentiation: results of the French Genito-Urinary Tumor Group (GETUG) P01 trial. Ann Oncology. 2011;22(11)2476481.
  44. Walia G, Pienta KJ, Simons JW, Soule HR. The 19th annual Prostate Cancer Foundation scientific retreat. Cancer Res. 2013;73(16):4988-91. doi: 10.1158/0008-5472.CAN-12-4576
  45. Tang A, Keu Gao K, Chu L, et al. Aurora kinases: novel therapy targets in cancers. Oncotarget. 2017;8(14):23937-54. doi: 10.18632/oncotarget.14893

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The data of OS in patients with small cell neuroendocrine prostate cancer (NEPC) [14].

Download (120KB)
3. Fig. 2. Schematic representation of the proto-oncogenic effect of serine/threonine protein kinase (AURKA), which shows the epithelial-mesenchymal transition [16].

Download (121KB)
4. Fig. 3. The illustration of the proto-oncogenic role of AURKA, expressed in stabilization of N-myc proto-oncogene, which acts as the transcription factor of CDK2, CDK4, CCND1 and CCNE1 genes expression, which determines the course of the cell through the cell cycle [17].

Download (159KB)
5. Fig. 4. OS depending on the nature of molecular genetic disorders in case of NEPC. The alteration in Rb1 and TP53 is the most adverse effects in terms of prognosis [12].

Download (102KB)
6. Fig. 5. OS of patients with different variants of NEPCs [25].

Download (78KB)
7. Fig. 6. Magnetic resonance imaging scans after 2 months of being on the treatment. There is the appearance of the enlargement of the of the left iliac lymph nodes conglomerate (upper left and lower slide), extracapsular spread in prostate without involving the rectum and bladder (upper right slide).

Download (87KB)
8. Fig. 7. CT of the abdomen after 2 months of treatment. There is the appearance of a tumor lesion of the tail of the pancreas (upper left slide), the involvement of the para-gastric lymph nodes (lower left slide), the enlargement of the iliac lymph nodes conglomerate associated with the compression of the left ureter (upper right slide), the development of left hydronephrosis with the enlargement of calices-pelvis system (lower right slide).

Download (165KB)
9. Fig. 8. Tumor dynamics in the para-gastric lymph nodes.

Download (72KB)
10. Fig. 9. There is a significant decrease of the tumor conglomerate mass of the iliac lymph nodes.

Download (55KB)

Copyright (c) 2022 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies