Прототип приемопередающего оборудования скоростной передачи данных в частотном диапазоне 57‒64 ГГц

Обложка

Цитировать

Полный текст

Аннотация

Целью настоящей работы является создание и исследование характеристик прототипа приемо-передающего оборудования с программно-определяемым функционалом, работающего в миллиметровом диапазоне длин волн в сетях скоростной передачи данных. В ходе работы были решены задачи разработки и программной реализации алгоритмов цифровой обработки сигналов и аппаратной части, проведены экспериментальные измерения характеристик и полевые испытания прототипа. Экспериментальные исследования показали, что разработанное оборудование осуществляет передачу и прием сигналов в диапазоне частот 57‒64 ГГц с возможностью дискретного изменения полосы частот сигналов: 100, 200, 400, 800 МГц и поддерживает 12 сигнально-кодовых конструкций с применением кодов с малой плотностью проверки на четность. Применение адаптивного алгоритма демодуляции и декодирования в радиоприемнике позволило повысить эффективность передачи сигналов и уменьшить вероятность пакетных ошибок в два раза. Разработанный прототип обеспечивает скорость передачи данных в пакете 2 Гбит/с на расстояниях до 100 м и 500 Мбит/с на расстояниях до 300 м.

Об авторах

О. В. Болховская

Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского

Email: obol@rf.un.ru
ORCID iD: 0000-0002-6679-9295

Г. А. Ермолаев

Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского

Email: gregory.a.ermolaev@gmail.com
ORCID iD: 0000-0003-4213-953X

С. Н. Tрушков

Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского

Email: trushkovsn@gmail.com
ORCID iD: 0000-0002-5599-7157

А. А. Мальцев

Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского

Email: maltsev@rf.un.ru
ORCID iD: 0000-0001-8694-0033

Список литературы

  1. Rappaport T.S., Sun S., Mayzus R., Zhao H., Azar Y., Wang K., et al. Millimeter Wave Mobile Communications for 5G Cellular: It Will Work! // IEEE Access. 2013. Vol. 1. PP. 335‒349. doi: 10.1109/ACCESS.2013.2260813
  2. Boccardi F., Heath R.W., Lozano A., Marzetta T.L., Popovski P. Five disruptive technology directions for 5G // IEEE Communications Magazine. 2014. Vol. 52. Iss. 2. PP. 74‒80. doi: 10.1109/MCOM.2014.6736746
  3. Sakaguchi K., Haustein T., Barbarossa S., STRINATI E.C., Clemente A., DESTINO G., et al. Where, When, and How mmWave is Used in 5G and Beyond // IEICE Transactions on Electronics. 2017. Vol. E100-C. Iss. 10. PP. 790‒808. doi: 10.1587/transele. E100.C.790
  4. Liu D., Gaucher B., Pfeiffer U., Grzyb J. Advanced Millimeter-wave Technologies: Antennas, Packaging and Circuits. John Wiley & Sons, 2009. 832 p.
  5. Perahia E., Cordeiro C., Park M., Yang L.L. IEEE 802.11ad: Defining the Next Generation Multi-Gbps Wi-Fi // Proceedings of the 7th IEEE Consumer Communications and Networking Conference (CCNC IEEE, Las Vegas, USA, 9–12 January 2010). IEEE, 2010. doi: 10.1109/CCNC.2010.5421713
  6. Nitsche T., Cordeiro C., Flores A.B., Knightly E.W., Perahia E., Widmer J.C. IEEE 802.11ad: directional 60 GHz communication for multi-Gigabit-per-second Wi-Fi // IEEE Communications Magazine. 2014. Vol. 52. Iss. 12. PP. 132‒141. DOI:10.1109/ MCOM.2014.6979964
  7. -11:2012/Amd.3:-2014 - ISO/IEC/IEEE. International Standard for Information technology--Telecommunications and information exchange between systems--Local and metropolitan area networks--Specific requirements-Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 3: Enhancements for Very High Throughput in the 60 GHz Band (adoption of IEEE Std 802.11ad-2012). IEEE, 2014. doi: 10.1109/IEEESTD.2014.6774849
  8. Ghasempour Y., da Silva C.R.C.M., Cordeiro C., Knightly E.W. IEEE 802.11ay: Next-Generation 60 GHz Communication for 100 Gb/s Wi-Fi // IEEE Communications Magazine. 2017. Vol. 55. Iss. 12. PP. 186‒192. doi: 10.1109/MCOM.2017.1700393
  9. Da Silva C.R.C.M., Lomayev A., Chen C., Cordeiro C. Analysis and Simulation of the IEEE 802.11ay Single-Carrier PHY // Proceedings of the International Conference on Communications (ICC, Kansas City, USA, 20‒24 May 2018). IEEE, 2018. DOI:10.1109/ ICC.2018.8422532
  10. 11ay-2021. IEEE Standard for Information Technology ‒ Telecommunications and Information Exchange between Systems Local and Metropolitan Area Networks--Specific Requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 2: Enhanced Throughput for Operation in License-exempt Bands above 45 GHz. IEEE, 2021. doi: 10.1109/IEEESTD.2021.9502046
  11. Dahlman E., Parkvall S., Skold J. 5G NR: The Next Generation Wireless Access Technology. Academic Press, 2018. doi: 10.1016/C2017-0-01347-2
  12. Maltsev A., Lomayev A., Pudeyev A., Bolotin I., Bolkhovskaya O., Seleznev V. Millimeter-wave Toroidal Lens-Array Antennas Experimental Measurements // Proceedings of the International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting (Boston, USA, 08‒13 July 2018). IEEE, 2018. PP. 607‒608. doi: 10.1109/APUSNCURSINRSM. 2018.8608633
  13. Bolkhovskaya O., Maltsev A., Seleznev V., Bolotin I. Cost-Efficient RAA Technology for Development of the High-Gain Steerable Antennas for mmWave Communications // In: Tallón-Ballesteros A.J., Chen C.H. (ed.) Machine Learning and Artificial Intelligence. Vol. 332. IOS Press, 2020. PP. 346‒353. doi: 10.3233/FAIA200800
  14. Yong S.-K., Xia P, Valdes-Garcia A. 60GHz Technology for Gbps WLAN and PAN: From Theory to Practice. John Wiley & Sons, 2011. 296 p.
  15. Shabany M, Gulak P.G. Efficient Compensation of the Nonlinearity of Solid-State Power Amplifiers Using Adaptive Sequential Monte Carlo Methods // IEEE Transactions on Circuits and Systems I: Regular Papers. 2008. Vol. 55. Iss. 10. PP. 3270‒3283. doi: 10.1109/TCSI.2008.925376
  16. Bhat S., Chockalingam A. Compensation of power amplifier nonlinear distortion in spatial modulation systems // Proceedings of the 17th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC, Edinburgh, UK, 03‒06 July 2016). IEEE, 2016. doi: 10.1109/SPAWC.2016.7536802
  17. Maltsev A., Shikov A., Pudeev A., Kim S., Yang S. A Method for Power Amplifier Distortions Compensation at the RX Side for the 5G NR Communication Systems // In: Tallón-Ballesteros A.J. (ed.) Proceedings of CECNet 2022. Vol. 363. IOS Press, 2022. PP. 119‒129. doi: 10.3233/FAIA220526
  18. Wyglinski A.M., Getz R., Collins T., Pu D. Software-Defined Radio for Engineers. Artech House, 2018. 378 p.
  19. Levanen T., Tervo O., Pajukoski K., Renfors M., Valkama M. Mobile Communications Beyond 52.6 GHz: Waveforms, Numerology, and Phase Noise Challenge // IEEE Wireless Communications. 2021. Vol. 28. Iss. 1. PP. 128‒135. doi: 10.1109/MWC.001.2000185
  20. Qi Y., Hunukumbure M., Nam H., Yoo H., Amuru S. On the Phase Tracking Reference Signal (PT-RS) Design for 5G New Radio (NR) // Proceedings of the 88th Vehicular Technology Conference (VTC-Fall, Chicago, USA, 27‒30 August 2018). IEEE, 2018. doi: 10.1109/VTCFall.2018.8690852
  21. Maltsev A., Pudeev A., Kim S., Yang S., Choi S., Myung S. Phase Tracking Sequences for 5G NR in 52.6‒71 GHz Band: Design and Analysis // In: Tallón-Ballesteros A.J. (ed.) Proceedings of CECNet 2021. Vol. 345. IOS Press, 2021. PP. 268‒282. doi: 10.3233/FAIA210412
  22. Ermolaev G.A., Bolkhovskaya O.V., Maltsev A.A. Advanced Approach for TX Impairments Compensation Based on Signal Statistical Analysis at the RX Side // Proceedings of the Wave Electronics and its Application in Information and Telecommunication Systems (WECONF, St. Petersburg, Russia, 31 May 2021‒04 June 2021). IEEE, 2021. doi: 10.1109/WECONF51603.2021.9470687


Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах