Prototype of High-Speed Data Transmission Receiving and Transmitting Equipment in the 57‒64 GHz Frequency Range

Cover Page

Cite item

Full Text

Abstract

The purpose of this work is to create and study the characteristics of a prototype of receiving and transmitting equipment operating in the millimeter wavelength range in high-speed data transmission networks. During the work, the task of developing and software implementation of digital signal processing algorithms was solved, the hardware part was developed and implemented, experimental measurements of characteristics and field tests of the prototype were carried out. Experimental studies have shown that the developed equipment transmits and receives signals in the frequency range 57‒64 GHz with the possibility of discrete change of the signal frequency bandwidth: 100, 200, 400, 800 MHz and supports 12 modulation and coding schemes with low-density parity check code. The use of an adaptive algorithm for demodulation and decoding at the receiver made it possible to increase the efficiency of signal transmission and reduce the probability of packet errors by half. The developed prototype provides a data transmission rate of 2 Gbit/s at distances up to 100 m and of 500 Mbit/s at distances up to 300 m.

About the authors

O. V. Bolkhovskaya

Lobachevsky State University of Nizhny Novgorod

Email: obol@rf.un.ru
ORCID iD: 0000-0002-6679-9295

G. A. Ermolaev

Lobachevsky State University of Nizhny Novgorod

Email: gregory.a.ermolaev@gmail.com
ORCID iD: 0000-0003-4213-953X

S. N. Trushkov

Lobachevsky State University of Nizhny Novgorod

Email: trushkovsn@gmail.com
ORCID iD: 0000-0002-5599-7157

A. A. Maltsev

Lobachevsky State University of Nizhny Novgorod

Email: maltsev@rf.un.ru
ORCID iD: 0000-0001-8694-0033

References

  1. Rappaport T.S., Sun S., Mayzus R., Zhao H., Azar Y., Wang K., et al. Millimeter Wave Mobile Communications for 5G Cellular: It Will Work! // IEEE Access. 2013. Vol. 1. PP. 335‒349. doi: 10.1109/ACCESS.2013.2260813
  2. Boccardi F., Heath R.W., Lozano A., Marzetta T.L., Popovski P. Five disruptive technology directions for 5G // IEEE Communications Magazine. 2014. Vol. 52. Iss. 2. PP. 74‒80. doi: 10.1109/MCOM.2014.6736746
  3. Sakaguchi K., Haustein T., Barbarossa S., STRINATI E.C., Clemente A., DESTINO G., et al. Where, When, and How mmWave is Used in 5G and Beyond // IEICE Transactions on Electronics. 2017. Vol. E100-C. Iss. 10. PP. 790‒808. doi: 10.1587/transele. E100.C.790
  4. Liu D., Gaucher B., Pfeiffer U., Grzyb J. Advanced Millimeter-wave Technologies: Antennas, Packaging and Circuits. John Wiley & Sons, 2009. 832 p.
  5. Perahia E., Cordeiro C., Park M., Yang L.L. IEEE 802.11ad: Defining the Next Generation Multi-Gbps Wi-Fi // Proceedings of the 7th IEEE Consumer Communications and Networking Conference (CCNC IEEE, Las Vegas, USA, 9–12 January 2010). IEEE, 2010. doi: 10.1109/CCNC.2010.5421713
  6. Nitsche T., Cordeiro C., Flores A.B., Knightly E.W., Perahia E., Widmer J.C. IEEE 802.11ad: directional 60 GHz communication for multi-Gigabit-per-second Wi-Fi // IEEE Communications Magazine. 2014. Vol. 52. Iss. 12. PP. 132‒141. DOI:10.1109/ MCOM.2014.6979964
  7. -11:2012/Amd.3:-2014 - ISO/IEC/IEEE. International Standard for Information technology--Telecommunications and information exchange between systems--Local and metropolitan area networks--Specific requirements-Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 3: Enhancements for Very High Throughput in the 60 GHz Band (adoption of IEEE Std 802.11ad-2012). IEEE, 2014. doi: 10.1109/IEEESTD.2014.6774849
  8. Ghasempour Y., da Silva C.R.C.M., Cordeiro C., Knightly E.W. IEEE 802.11ay: Next-Generation 60 GHz Communication for 100 Gb/s Wi-Fi // IEEE Communications Magazine. 2017. Vol. 55. Iss. 12. PP. 186‒192. doi: 10.1109/MCOM.2017.1700393
  9. Da Silva C.R.C.M., Lomayev A., Chen C., Cordeiro C. Analysis and Simulation of the IEEE 802.11ay Single-Carrier PHY // Proceedings of the International Conference on Communications (ICC, Kansas City, USA, 20‒24 May 2018). IEEE, 2018. DOI:10.1109/ ICC.2018.8422532
  10. 11ay-2021. IEEE Standard for Information Technology ‒ Telecommunications and Information Exchange between Systems Local and Metropolitan Area Networks--Specific Requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 2: Enhanced Throughput for Operation in License-exempt Bands above 45 GHz. IEEE, 2021. doi: 10.1109/IEEESTD.2021.9502046
  11. Dahlman E., Parkvall S., Skold J. 5G NR: The Next Generation Wireless Access Technology. Academic Press, 2018. doi: 10.1016/C2017-0-01347-2
  12. Maltsev A., Lomayev A., Pudeyev A., Bolotin I., Bolkhovskaya O., Seleznev V. Millimeter-wave Toroidal Lens-Array Antennas Experimental Measurements // Proceedings of the International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting (Boston, USA, 08‒13 July 2018). IEEE, 2018. PP. 607‒608. doi: 10.1109/APUSNCURSINRSM. 2018.8608633
  13. Bolkhovskaya O., Maltsev A., Seleznev V., Bolotin I. Cost-Efficient RAA Technology for Development of the High-Gain Steerable Antennas for mmWave Communications // In: Tallón-Ballesteros A.J., Chen C.H. (ed.) Machine Learning and Artificial Intelligence. Vol. 332. IOS Press, 2020. PP. 346‒353. doi: 10.3233/FAIA200800
  14. Yong S.-K., Xia P, Valdes-Garcia A. 60GHz Technology for Gbps WLAN and PAN: From Theory to Practice. John Wiley & Sons, 2011. 296 p.
  15. Shabany M, Gulak P.G. Efficient Compensation of the Nonlinearity of Solid-State Power Amplifiers Using Adaptive Sequential Monte Carlo Methods // IEEE Transactions on Circuits and Systems I: Regular Papers. 2008. Vol. 55. Iss. 10. PP. 3270‒3283. doi: 10.1109/TCSI.2008.925376
  16. Bhat S., Chockalingam A. Compensation of power amplifier nonlinear distortion in spatial modulation systems // Proceedings of the 17th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC, Edinburgh, UK, 03‒06 July 2016). IEEE, 2016. doi: 10.1109/SPAWC.2016.7536802
  17. Maltsev A., Shikov A., Pudeev A., Kim S., Yang S. A Method for Power Amplifier Distortions Compensation at the RX Side for the 5G NR Communication Systems // In: Tallón-Ballesteros A.J. (ed.) Proceedings of CECNet 2022. Vol. 363. IOS Press, 2022. PP. 119‒129. doi: 10.3233/FAIA220526
  18. Wyglinski A.M., Getz R., Collins T., Pu D. Software-Defined Radio for Engineers. Artech House, 2018. 378 p.
  19. Levanen T., Tervo O., Pajukoski K., Renfors M., Valkama M. Mobile Communications Beyond 52.6 GHz: Waveforms, Numerology, and Phase Noise Challenge // IEEE Wireless Communications. 2021. Vol. 28. Iss. 1. PP. 128‒135. doi: 10.1109/MWC.001.2000185
  20. Qi Y., Hunukumbure M., Nam H., Yoo H., Amuru S. On the Phase Tracking Reference Signal (PT-RS) Design for 5G New Radio (NR) // Proceedings of the 88th Vehicular Technology Conference (VTC-Fall, Chicago, USA, 27‒30 August 2018). IEEE, 2018. doi: 10.1109/VTCFall.2018.8690852
  21. Maltsev A., Pudeev A., Kim S., Yang S., Choi S., Myung S. Phase Tracking Sequences for 5G NR in 52.6‒71 GHz Band: Design and Analysis // In: Tallón-Ballesteros A.J. (ed.) Proceedings of CECNet 2021. Vol. 345. IOS Press, 2021. PP. 268‒282. doi: 10.3233/FAIA210412
  22. Ermolaev G.A., Bolkhovskaya O.V., Maltsev A.A. Advanced Approach for TX Impairments Compensation Based on Signal Statistical Analysis at the RX Side // Proceedings of the Wave Electronics and its Application in Information and Telecommunication Systems (WECONF, St. Petersburg, Russia, 31 May 2021‒04 June 2021). IEEE, 2021. doi: 10.1109/WECONF51603.2021.9470687


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies