Swarm Robotics System Algorithm for Defense against Coordinated Behavior Strategy Attacks

Cover Page

Cite item

Full Text

Abstract

Problem statement: designing the defense mechanism against coordinated behavior strategy attacks for mobile multiagent robotic systems. Possible attacks of that kind may be carried out by use message interception, creating and transmitting disinformation, and other actions, that does not have identifiable characteristics of saboteur intrusion, and lead to making incorrect or non-optimal decision by group of robots. The purpose of the work: the increase of probability of detection coordinated behavior strategy attacks on mobile multiagent robotic systems. Methods used: proposed algorithm is further development of self organization mechanism, using trust and reputation metrics for detection and counteraction against malicious robots. Accuracy of proposed method is confirmed using imitation model of collective exploration task. The novelty: algorithm is based on quantification of consensus achievement process into consecutive time periods, which is followed by inter- and intraperiod processing of information, produces by robots of the swarm and by malicious robots during communication. The result: experiment shows that the swarm is capable to counteract against coordinated attack of malicious robots, when concentration of malicious units is more than 51 %. The probability of such counteraction is close to 1. Known detection and counteraction methods for destructive informational influence in homogeneous swarms of robots prove to be effective in cases, when concentration of malicious units is less than 45 %. Practical significance: developed algorithm may be used for multiagent robotic systems security system design to protect against attack, executed during interactions between agents of the swarm. Algorithm allows to successfully counteract coordinated attacks similar to «51 percent attack».

About the authors

I. A. Zikratov

The Bonch-Bruevich Saint Petersburg State University of Telecommunications

Email: zikratov.ia@sut.ru
ORCID iD: 0000-0001-9054-800X
SPIN-code: 8991-5212

T. V. Zikratova

Naval polytechnic institute of Navy Development of the Military Research and Educational Center of the Navy “Naval Academy named after Admiral of the Fleet of the Soviet Union N.G. Kuznetsov”

Email: ztv64@mail.ru
ORCID iD: 0000-0001-8365-658X

E. A. Novikov

The Bonch-Bruevich Saint Petersburg State University of Telecommunications

Email: novikov.ea@sut.ru
ORCID iD: 0000-0003-3448-3015
SPIN-code: 5668-1485

References

  1. Sailor M.J., Link J.R. Smart dust: nanostructured devices in a grain of sand // Chemical Communications. 2005. Iss. 11. P. 1375.
  2. Higgins F., Tomlinson A., Martin K.M. Threats to the Swarm: Security Considerations for Swarm Robotics // International Journal on Advances in Security. 2009. Vol. 2. Iss. 2&3. PP. 288–297.
  3. Page J., Zaslavsky A., Indrawan M. A Buddy model of security for mobile agent communities operating in pervasive scenarios // Proceeding of the Australasian Information Security Workshop (AISW 2004), the Australasian Workshop on Data Mining and Web Intelligence (DMWI 2004), the Australasian Workshop on Software Internationalisation (AWSI 2004), Dunedin, New Zealand, January 2004. Sydney: Australian Computer Society, 2004. Vol. 54. PP. 17–25.
  4. Schillo M., Funk P., Rovatsos M. Using trust for detecting deceitful agents in artificial societies // Applied Artificial Intelligence. 2000. Vol. 14. Iss. 8. PP. 825–848. doi: 10.1080/08839510050127579
  5. Golbeck J., Parsia B., Hendler J. Trust Networks on the Semantic Web // Proceeding of the 7th International Workshop on Cooperative Information Agents (CIA 2003, Helsinki, Finland, 27‒29 August 2003). Lecture Notes in Computer Science. Berlin Heidelberg: Springer-Verlag, 2003. Vol. 2782. PP. 238–249.
  6. Garcia-Morchon O., Kuptsov D., Gurtov A., Wehrle K. Cooperative security in distributed networks // Computer Communications. 2013. Vol. 36. Iss. 12. PP. 1284–1297. doi: 10.1016/j.comcom.2013.04.007
  7. Strobel V., Castelló Ferrer E., Dorigo M. Blockchain Technology Secures Robot Swarms: A Comparison of Consensus Protocols and Their Resilience to Byzantine Robots // Frontiers in Robotics and AI. 2020. Vol. 7. P. 54. doi: 10.3389/frobt.2020.00054
  8. Fagiolini A., Pellinacci M., Valenti G., Dini G., Bicchi A. Consensus-based Distributed Intrusion Detection for Multi-Robot Systems // Proceedings of the International Conference on Robotics and Automation (ICRA 2008, Pasadena, USA, 19‒23 May 2008). IEEE, 2008. doi: 10.1109/ROBOT.2008.4543196
  9. Бешта А.А., Кирпо М.А. Построение модели доверия к объектам автоматизированной информационной системы для предотвращения деструктивных воздействий на систему // Известия Томского политехнического университета. 2013. Т. 322. № 5. С. 104–108. EDN:QOXUKV
  10. Зикратов И.А., Зикратова Т.В. Использование поведенческих моделей для исследования социумов роботов // Информация и космос. 2022. № 4. С. 170‒174. EDN:DQASLC
  11. Basan A., Basan E., Makarevich O. Analysis of ways to secure group control for autonomous mobile robots // Proceedings of the 10th International Conference on Security of Information and Networks (Jaipur, India, 13‒15 October 2017). New York: Association for Computing Machinery, 2017. PP. 134‒139. doi: 10.1145/3136825.3136879
  12. Strobel V., Castelló Ferrer E., Dorigo M. Managing Byzantine Robots via Blockchain Technology in a Swarm Robotics Collective Decision Making Scenario: Robotics track // Proceedings of the International Conference on Autonomous Agents and Multiagent Systems (IntelliSys 2016). Lecture Notes in Networks and Systems. Vol. 16. Cham: Springer, 2018. PP. 541‒549.
  13. Sargeant I., Tomlinson A. Review of Potential Attacks on Robotic Swarms // Proceedings of the International Conference on Autonomous Agents and Multiagent Systems (IntelliSys 2016). Lecture Notes in Networks and Systems. Vol. 16. Cham: Springer, 2018. PP. 628‒646. doi: 10.1007/978-3-319-56991-8_46
  14. Рябцев С.С. Метод выявления вредоносных роботов на основе данных процесса коллективного принятия решений в роевых робототехнических системах // Системы управления, связи и безопасности. 2022. № 3. С. 105‒137. doi: 10.24412/2410-9916-2022-3-105-137. EDN:SVSCHG
  15. Юрьева Р.А., Комаров И.И., Викснин И.И. Иммунологические принципы принятия решения в мультиагентных робототехнических системах // Глобальный научный потенциал. 2015. № 5(50). C. 87‒91. EDN:UKOVSB
  16. Юрьева Р.А., Комаров И.И., Масленников О.С. Разработка метода обнаружения и идентификации скрытого деструктивного воздействия на мультиагентные робототехнические системы // Программные системы и вычислительные методы. 2016. № 4. C. 375‒382. doi: 10.7256/2305-6061.2016.4.21128. EDN:XIAJDB
  17. Valentini G., Brambilla D., Hamann H., Dorigo M. Collective Perception of Environmental Features in a Robot Swarm // Proceedings of the International Conference on Swarm Intelligence. Lecture Notes in Computer Science. Vol. 9882. Cham: Springer, 2016. PP. 65‒76. doi: 10.1007/978-3-319-44427-7_6
  18. Каляев И.А., Гайдук А.Р., Капустян С.Г. Модели и алгоритмы коллективного управления в группах роботов. М.: ФИЗМАТЛИТ, 2009. 280 с. EDN:MUWSIT
  19. Зикратова Т.В. Метод группового управления в мультиагентных робототехнических системах в условиях воздействия дестабилизирующих факторов // Труды учебных заведений связи. 2021;7(3):92‒100. doi: 10.31854/1813-324X-2021-7-3-92-100. EDN:JFMYBF
  20. Zikratov I.A., Lebedev I.S., Gurtov A.V., Kuzmich E.V. Securing swarm intellect robots with a police office model // Proceedings of the 8th IEEE International Conference on Application of Information and Communication Technologies (AICT, Astana, Kazakhstan, 15‒17 October 2014). IEEE, 2014. doi: 10.1109/ICAICT.2014.7035906
  21. Лефевр В.А., Смолян Г.Л. Алгебра конфликта. М., 1968. 51 с.
  22. Городецкий В.И. Поведенческие модели кибер-физических систем и групповое управление: основные понятия // Известия ЮФУ. Технические науки. 2019. № 1(203). С. 144–162. doi: 10.23683/2311-3103-2019-1-144-162. EDN:LYUZBR
  23. Карпов В.Э. Социальные сообщества роботов: от реактивных к когнитивным агентам // Мягкие измерения и вычисления. 2019. № 2(15). С. 61‒78. EDN:SEFEFV

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».