Code Division Based on Double Spread Spectrum Signal

Cover Page

Cite item

Full Text

Abstract

Relevance: The work addresses the problems of broadband modulation in relation to multiple access problems. The advantages of code multiplexing in the process of expanding the signal spectrum are indicated, which, as shown in the work, is a promising method of parallel data transmission. Purpose: The purpose of this work is, firstly, to increase the efficiency of using address sequences to identify the sender and recipient of information; secondly, to organize a parallel data transmission process from one node to many, ensuring the anonymity of the recipient and, thirdly, maintaining a low peak signal factor. Statement of the problem: The objectives of the work include the selection of address code structures, which, at two stages of expanding the signal spectrum, should solve the issues of identifying senders and recipients of information in the network at the physical level. It is required to build a system model that will ensure parallel data transfer from one node to many. An important requirement in such a multiple access network should be the ability to use modulation with the lowest signal crest factor. Methods: This work proposes two-stage wideband modulation using the direct spread spectrum method, where each sending node first generates an equivalent Gold code as the sum of sequences of maximum length addressed to recipient nodes, and then uses an address sequence identifying itself from set of orthogonal signals. The paper proposes methods for processing spectrum-expanding sequences based on the dual basis of the Galois field, which make it possible to quite effectively isolate information intended for each recipient. Results: A model of a parallel data transmission system with multiple access based on two-stage spectrum expansion is proposed. Identification of senders and recipients of information is carried out by mechanisms for the formation of address signal-code structures at the physical level. It is possible to implement a model with anonymous recipients, when any of the recipient nodes does not have information about the data addressed to other nodes. Also, this model does not contradict the use of the most noise-resistant type of modulation BPSK (or QPSK in single-bit transmission mode), which is designed to provide an extremely low signal crest factor. Novelty: A fundamentally new method of addressing at the physical level for a network with parallel information transmission is proposed, which increases the efficiency of using the frequency range. Theoretical and practical significance: The results obtained in the work, in the future, can be used in the construction of various highly noise-resistant networks with multiple access, where an important requirement is, first of all, an extremely low crest factor of the data source signal. Such networks include, in particular, networks formed by swarms of UAVs.

About the authors

D. S. Kukunin

The Bonch-Bruevich Saint Petersburg State University of Telecommunications

Email: kukunin.ds@sut.ru
ORCID iD: 0000-0002-2674-5217
SPIN-code: 5276-1211

References

  1. Бабков В.Ю., Никитин А.Н., Осенний К.Н., Сиверс М.А. Системы связи с кодовым разделением каналов. СПб.: TPMADA, 2003. 239 с.
  2. Бобровский В.И. Многопользовательское детектирование. Ульяновск: Вектор-С, 2007. 346 с.
  3. Бобровский В.И. Фрактальные алгоритмы многопользовательского детектирования «плотных» ансамблей сигналов // Техника средств связи. 2019. № 4(148). С. 15–28. EDN:YFHTZY
  4. Шахнович И.В. Современные технологии беспроводной связи. М.: Техносфера, 2006. 288 с. EDN:QMPRPT
  5. Hajar A., Hamamreh J.M., Abewa M., Belallou Y. A Spectrally Efficient OFDM-Based Modulation Scheme for Future Wireless Systems // Proceedings of Scientific Meeting on Electrical-Electronics & Biomedical Engineering and Computer Science (EBBT, Istanbul, Turkey, 24‒26 April 2019). IEEE, 2019. doi: 10.1109/EBBT.2019.8742049
  6. Du Y., Liu J., Chen Y. Performance Analysis of Nonlinear SFBC OFDM Systems Over TWDP Fading Channel // IEEE Access. 2019. Vol. 7. PP. 101981‒101991. doi: 10.1109/ACCESS.2019.2927753
  7. Кукунин Д.С., Когновицкий О.С., Березкин А.А., Киричек Р.В. Перспективы использования рекуррентных последовательностей в современной телекоммуникационной среде. СПб.: СПбГУТ, 2023. 289 с.
  8. Когновицкий О.С. Широкополосные сигналы данных с расширением спектра прямой последовательностью и их характеристика // Труды учебных заведений связи. 2016. Т. 2. № 1. С. 82‒89. EDN:XCGQHP
  9. Khudhair A.Y., Abd Khalid R.A. Reduction of the Noise Effect to Detect the DSSS Signal using the Artificial Neural Network // Proceedings of the 1st Babylon International Conference on Information Technology and Science (BICITS, Babil, Iraq, 28-29 April 2021). IEEE, 2021. PP. 185‒188. doi: 10.1109/BICITS51482.2021.9509880
  10. Visan D.A., Jurian M., Lita I., Ionescu L.M., Mazare A.G. Direct Sequence Spread Spectrum Communication Module for Efficient Wireless Sensor Networks // Proceedings of the 11th International Conference on Electronics Computers and Artificial Intelligence (ECAI, Pitesti, Romania, 27‒29 June 2019). IEEE, 2019. doi: 10.1109/ECAI46879.2019.9041979
  11. Dmitriyev E.M., Rogozhnikov E.V., Movchan A.K., Mukhamadiev S.M., Krukov Y.V., Duplishcheva N.V. Spread spectrum technology research and its application in power line communication systems // T-Comm. 2020. Vol. 14. Iss. 10. PP. 45‒52. doi: 10.36724/2072-8735-2020-14-10-45-52. EDN:VZDBDQ
  12. Qiu Z., Peng H., Li T. A Blind Despreading and Demodulation Method for QPSK-DSSS Signal With Unknown Carrier Offset Based on Matrix Subspace Analysis // IEEE Access. 2019. Vol. 7. PP. 125700‒125710. doi: 10.1109/ACCESS.2019.2938785
  13. Варакин Л.Е. Системы связи с шумоподобными сигналами. М.: Радио и связь, 1985. 384 c.
  14. Деев В.В. Методы модуляции и кодирования в современных системах связи. СПб.: Наука, 2007. 268 с.
  15. Прокис Дж. Цифровая связь. Пер. с англ. М.: Радио и связь, 2000. 797 с.
  16. Никитин Г.И. Применение функций Уолша в сотовых системах связи с кодовым разделением каналов: учебное пособие. СПб.: ГУАП, 2003. 86 с.
  17. Кукунин Д.С., Березкин А.А., Киричек Р.В. Многослойные ортогональные структуры на основе последовательностей максимальной длины // Инфокоммуникационные технологии, 2022. Т. 20. № 2(78). С. 42‒50. doi: 10.18469/ikt.2022.20.2.05. EDN:DOLLWE
  18. Kukunin D., Berezkin A., Kirichek R. Asynchronous Address System Using Code Division Based on Maximum Length Sequences // Proceedings of International Conference on Information, Control, and Communication Technologies (ICCT, Astrakhan, Russian Federation, 03‒07 October 2022). IEEE, 2022. doi: 10.1109/ICCT56057.2022.9976772
  19. Кукунин Д.С., Березкин А.А., Киричек Р.В., Елисеева К.А. Асинхронная передача данных с использованием многослойных ортогональных структур в системах с кодовым разделением каналов // Электросвязь. 2023. № 1. С. 26‒35. doi: 10.34832/ELSV2023.38.1.003. EDN:HNTXND
  20. Когновицкий О.С. Двойственный базис и его применение в телекоммуникациях. СПб.: Линк, 2009.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies