Recursive Selection of Hyperexponential Distributions in Approximation of Distributions with "Heavy Tails"

Cover Page

Cite item

Full Text

Abstract

It is known that many quantities that determine the network characteristics of the functioning of an infocommunication network have probability distributions with "heavy tails", which can have a significant impact on network performance. Models with heavy-tailed distributions tend to be difficult to analyze. The analysis can be simplified by using an algorithm to approximate a heavy-tailed distri-bution by a hyperexponential distribution (a finite mixture of exponentials). The paper presents a algorithm for calculating the parameters of the hyperexponential distribution components, which is based on a recursive selection of parameters. This algorithm allows you to analyze various models of queues, including G/G/1. It is shown that the approach under consideration is applicable to the approxi-mation of monotonically decreasing distributions, including those with a "heavy tail". Examples of approximation of Pareto and Weibull distributions are given.

About the authors

M. A. Buranova

Povolzhskiy State University of Telecommunications and Informatics

Email: m.buranova@psuti.ru
ORCID iD: 0000-0003-2986-8252

V. G. Kartashevskiy

Povolzhskiy State University of Telecommunications and Informatics

Email: v.kartashevskiy@psuti.ru
ORCID iD: 0000-0003-1114-3966

References

  1. Клейнрок Л. Теория массового обслуживания. Пер. с англ. М.: Машиностроение, 1979. 432 с.
  2. Шелухин О.И., Смольский С.М., Осин А.В. Самоподобие и фракталы. Телекоммуникационные приложения. М.: Физматлит, 2008. 368 с.
  3. Kotz S., Johnson N.L., Read C.B. Encyclopedia of Statistical Sciences. Vol. 8. New York: Wiley, 1988. PP. 352‒357.
  4. Keilson J., Machihara F. Hyperexponential waiting time structure in hyperexponential H_K/H_L/1 system // Journal of the Operation Research Society of Japan. 1985. Vol. 28. Iss. 3. PP. 242‒250. doi: 10.15807/jorsj.28.242
  5. Feldmann A., Whitt W. Fitting mixtures of exponentials to long-tail distributions to analyze network performance models // Performance Evaluation. 1998. Vol. 31. Iss. 3–4. PP. 245‒279. doi: 10.1016/S0166-5316(97)00003-5
  6. Буранова М.А., Карташевский В.Г. Определение параметров гиперэкспоненциального распределения методом рекурсивного подбора // XXVII Международная научно-техническая конференция, посвященная 60-летию полетов в космос Ю.А. Гагарина и Г.С. Титова «Радиолокация, навигация, связь» (Воронеж, Россия, 28–30 сентября 2021). Воронеж: Издательский дом ВГУ, 2021. С. 43‒54.
  7. Королев В.Ю. EM-алгоритм его модификации и их применение к задаче разделения смесей вероятностных распределений. Теоретический обзор. M.: ИПИ РАН, 2007. 94 с.
  8. Buranova M., Ergasheva D., Kartashevskiy V. Using the EM-algorithm to Approximate the Distribution of a Mixture by Hyperexponents // Proceedings of the International Conference on Engineering and Telecommunication (EnT, Dolgoprudny, Russia, 20‒21 November 2019). IEEE, 2019. doi: 10.1109/EnT47717.2019.9030551
  9. Тарасов В.Н., Карташевский И.В. Определение среднего времени ожидания требований в управляемой системе массового обслуживания Н2/Н2/1 // Системы управления и информационные технологии. 2014. №3(57). С. 92‒96.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).