Modeling of electromagnetic wave reflection from wet soil taken into account of dispersion, heterogeneity and surface roughness

封面

如何引用文章

详细

Background. Taking into account temperature, soil composition, surface roughness and the dependence of effective dielectric constant on frequency allows a more accurate assessment of soil moisture and other important parameters, which can be used in various fields such as agriculture, geology, ecology and hydrology.

Aim. In this work, we calculate the reflection of a linearly polarized electromagnetic wave from wet soil, taking into account such physical factors as heterogeneity of soil structure, surface roughness and dispersion.

Methods. Based on a heterogeneous mathematical model of wet soil, taking into account the dispersion of the dielectric constant of water and surface roughness, expressions are derived for the complex reflection coefficients of electromagnetic waves of vertical and horizontal polarization.

Results. The model of loose wet soil with the standard deviation of roughness on the surface was chosen as the object of study. An analysis of the frequency and angular characteristics of the modules of the reflection coefficients was carried out at a fixed level of soil moisture.

Conclusion. The data obtained as a result of the calculations is a valuable tool for further improving methods of remote sensing of the Earth and contributes to the development of new technologies for monitoring soil parameters using unmanned aerial vehicles, which opens up prospects for more accurate and efficient analysis of the state of land resources and ecosystems.

全文:

Introduction

Due to the accelerated growth of technological production processes in the agricultural industry, there is a need to measure soil moisture remotely in real time [1; 2]. Existing methods for determining soil moisture are mainly contact methods and have different labor intensity and error [3]. Synthetic aperture radar data are widely used for remote estimates of soil moisture content [4; 5]. However, such estimates may face difficulties due to various factors such as heterogeneous soil composition, temperature and vegetation cover effects. To improve the accuracy and precision of soil moisture estimates, a new approach based on a mathematical model of moist soil using the concept of artificial metamaterials is proposed [6–8]. This paper considers the adaptation of the metamaterial model to moist soil, where dry soil acts as a container and inclusions act as regions of unknown moisture content. The purpose of constructing such a mathematical model is to analyze the reflection of electromagnetic wave from moist soil, taking into account dispersion and surface roughness. For this purpose, the heterogeneous Maxwell-Garnett model [9], which takes into account the dispersion of the dielectric constant of water in the soil, has been applied. The use of such mathematical models can greatly improve the performance of remote sensing of soil moisture and provide more accurate data for agricultural processes.

1. Heterogeneous mathematical model of complex dielectric permittivity of moist soil with regard to dispersion

Moist soil is considered as a heterogeneous medium consisting of a solid matrix (dry soil) with water filled pores (Fig. 1). The complex dielectric constant (CDC) of dry soil εс can be considered as the permeability of a solid matrix, which is constant for a certain type of soil. The CDC of pure water εw, however, depends on both the frequency f and the temperature T.

 

Fig. 1. Wet soil as a two-component heterogeneous system

Рис. 1. Влажная почва как двухкомпонентная гетерогенная система

 

The equation for the effective CDC of moist soil based on the heterogeneous Maxwell-Garnett model can be written in the following form:

εэффf,T,W=εс1+2αWεxf,T1αWεxf,T; (1)

εxf,T=εwf,Tεcεwf,T+2εc,

where α=Wρdw is the concentration of moist components in soil; W is the soil moisture; ρdw is the normalized dry soil density.

The pure water CDC is described in general by the following equation:

εwf,T=ε'wf,Tjε''wf,T, (2)

where ε'wf,T is the real part of the CDC of water; ε''wf,T is the imaginary part of the CDC of water; j is the imaginary unit.

Further, for the compactness of writing formulas, we will use simplified designations of the real and imaginary parts of the CDC, assuming their dependence on frequency and temperature: ε'w, ε''w.

The explicit form of expressions for the real and imaginary parts of the pure water CDC are given in the ITU recommendations [10] and are written in the following form:

ε'w=εsε11+Ω12+ε1ε1+Ω22+ε; (3)

ε'w=Ω1εsε11+Ω12+Ω2ε1ε1+Ω22, (4)

where Ω1=f/f1; Ω2=f/f2; εs=77,66+103,3β; ε1=0,0671εs; ε=3,527,52β; β=300/T+273,151, f1 and f2 are the Debye relaxation frequencies, GHz:

f1=20,20146,4β+316β2;f2=39,8f1. (5)

2. Reflection of a plane electromagnetic wave from the air-soil interface when surface roughness is taken into account

We shall consider the problem of oblique incidence of a plane electromagnetic wave of linear polarization on the air-soil interface taking into account the surface roughness. The geometry of the problem is shown in Fig. 2. The wave falls on the interface at an angle of θ. Region 1 is a vacuum with permeabilities: ε1=1, μ1=1. Moist soil (Region 2) is described by the material parameters and For simplicity, we denote the effective dielectric constant of moist soil as εэфф.

 

Fig. 2. Geometry of the problem

Рис. 2. Геометрия задачи

 

To take into account the roughness of the soil surface, we used the model proposed in [11], according to which the reflection coefficients for waves of horizontal Re and vertical Rh polarization are determined as:

Re=cosθεэффsin2(θ)cosθ+εэффsin2(θ)Ψh,θ; (6)

Rh=εэффcosθεэффsin2(θ)εэффcosθ+εэффsin2(θ)Ψh,θ, (7)

where Ψh,θ=exp12hcos2θ.

In formulas (6) and (7), h is the roughness parameter, which is defined as follows:

h=4σ22πλ2, (8)

where λ is the electromagnetic wavelength; σ is the standard deviation of roughness on the soil surface.

According to [12], the following is accepted: for a slightly rough surface σ<0,2 cm, for a surface with an average roughness of 0,2 cm σ 1 cm, and for a strongly rough surface σ>1 cm. The values of the electromagnetic wave reflection coefficients calculated by formulas (6) and (7) from the soil were compared with the experimental results given in [13; 14]. There is a steady correspondence between theoretical dependences and experimental values of reflection coefficients of moist and frozen soils at different frequencies, at different soil moisture contents.

3. Calculation results

During the calculations, a model of loose soil ρdw=1,5 (silty loam) with a standard deviation of roughness on the soil surface σ>0,5 cm and a temperature T=20 °С. CDC permeability of dry soil εc=3,556j0,361 is considered. Figs. 3 and 4 show graphs of calculations of the reflection coefficients of a plane electromagnetic wave of horizontal and vertical polarization depending on the frequency of probing radiation at a fixed value of soil moisture W=15 % and the following angles of incidence: θ=0° is depicted as a solid line, θ=30° as a dashed line, and θ=45° as a dotted line. The calculations were performed in the frequency range from 1 GHz to 15 GHz.

From the graph in Fig. 3, it can be seen that the reflection level in the case of horizontal polarization increases with increasing angle of incidence. However, for the case of vertical polarization in the frequency range of interest from 1 to 6 GHz, the reflection level decreases with increasing incidence angle.

 

Fig. 3. Dependences of the absolute values of the reflection coefficients of an electromagnetic wave of horizontal polarization on frequency at different angles of incidence

Рис. 3. Зависимости модулей коэффициентов отражения электромагнитной волны горизонтальной поляризации от частоты при различных углах падения

 

Fig. 4. Dependences of the modules of the reflection coefficients of an electromagnetic wave of vertical polarization on frequency at different angles of incidence

Рис. 4. Зависимости модулей коэффициентов отражения электромагнитной волны вертикальной поляризации от частоты при различных углах падения

 

Figs. 5 and 6 are plots of calculations of the reflection coefficient moduli of a plane electromagnetic wave of horizontal and vertical polarization as a function of soil moisture at a fixed value of the angle of incidence θ=30° and the following frequencies: 1 GHz is depicted as a solid line, 5 GHz as a dashed line, 10 GHz as a dotted line.

Calculations were carried out in the range of soil moisture variation up to 50 %. From the graphs presented in Figs. 5, 6, it can be seen that with increasing soil moisture the level of reflection smoothly increases.

 

Fig. 5. Dependences of the modules of the reflection coefficients of an electromagnetic wave of horizontal polarization on soil moisture at various frequencies

Рис. 5. Зависимости модулей коэффициентов отражения электромагнитной волны горизонтальной поляризации от влажности почвы на различных частотах

 

Fig. 6. Dependences of the modules of the reflection coefficients of an electromagnetic wave of vertical polarization on soil moisture at various frequencies

Рис. 6. Зависимости модулей коэффициентов отражения электромагнитной волны вертикальной поляризации от влажности почвы на различных частотах

 

Figs. 7 and 8 are plots of calculations of the reflection coefficient moduli of a plane electromagnetic wave of horizontal and vertical polarization as a function of the angle of incidence at a fixed value of soil moisture W=30 % and the following frequencies: 1 GHz is depicted as a solid line, 5 GHz as a dashed line, 10 GHz as a dotted line.

 

Fig. 7. Dependences of the absolute values of the reflection coefficients of an electromagnetic wave of horizontal polarization on the angle of incidence at various frequencies

Рис. 7. Зависимости модулей коэффициентов отражения электромагнитной волны горизонтальной поляризации от угла падения на различных частотах

 

Fig. 8. Dependences of the modules of the reflection coefficients of an electromagnetic wave of vertical polarization on the angle of incidence at various frequencies

Рис. 8. Зависимости модулей коэффициентов отражения электромагнитной волны вертикальной поляризации от угла падения на различных частотах

 

From the graphs presented in Figs. 7, 8, it can be seen that in the case of horizontal polarization with increasing angle of incidence there is an increase in the level of reflection of the electromagnetic wave, and in the case of vertical polarization the Brewster phenomenon is clearly manifested at an angle of incidence of 74°.

Conclusion

The results of calculations of electromagnetic wave reflection coefficients from moist soil obtained in this work are valuable information for various fields of science and industry. They can be used to determine the optimal plant watering regime, to control water drainage systems, and to develop systems for automated control of soil moisture in greenhouse farming. In addition, these data can be useful for ecologists when studying the effects of soil moisture on vegetation and animal life, and for geologists when studying soil composition and structure. The results of the calculations can also be used for remote sensing of the earth’s surface by Unmanned Aerial Vehicles (UAVs). This opens up new opportunities for monitoring studies of soils and land moisture, as well as for assessing the state of ecosystems.

×

作者简介

Dmitry Panin

Povolzhskiy State University of Telecommunications and Informatics

编辑信件的主要联系方式.
Email: d.panin@psuti.ru
ORCID iD: 0000-0003-0598-8591
SPIN 代码: 9999-0844
Researcher ID: AAT-1882-2020

Candidate of Physical and Mathematical Sciences, head of the Department of Theoretical Foundations of Radio Engineering and Communication

俄罗斯联邦, 23, L. Tolstoy Street, Samara, 443010

Oleg Osipov

Povolzhskiy State University of Telecommunications and Informatics

Email: o.osipov@psuti.ru
ORCID iD: 0000-0002-2125-9228
SPIN 代码: 2741-3794
Researcher ID: B-7134-2018

Doctor of Physical and Mathematical Sciences, head of the Department of Higher Mathematics

俄罗斯联邦, 23, L. Tolstoy Street, Samara, 443010

参考

  1. Z.-L. Li et al., “Soil moisture retrieval from remote sensing measurements: Current knowledge and directions for the future,” Earth-Science Reviews, vol. 218, p. 103673, 2021, doi: https://doi.org/10.1016/j.earscirev.2021.103673.
  2. S. Sadri et al., “A global near-real-time soil moisture index monitor for food security using integrated SMOS and SMAP,” Remote Sensing of Environment, vol. 246, p. 111864, 2020, doi: https://doi.org/10.1016/j.rse.2020.111864.
  3. J. P. Walker, G. R. Willgoose, and J. D. Kalma, “In situ measurement of soil moisture: a comparison of techniques,” Journal of Hydrology, vol. 293, no. 1, pp. 85–99, 2004, doi: https://doi.org/10.1016/j.jhydrol.2004.01.008.
  4. N. Chen et al., “Surface soil moisture estimation at high spatial resolution by fusing synthetic aperture radar and optical remote sensing data,” Journal of Applied Remote Sensing, vol. 14, no. 2, p. 024508, 2020, doi: https://doi.org/10.1117/1.JRS.14.024508.
  5. J. Wang et al., “Saline soil moisture mapping using Sentinel-1A synthetic aperture radar data and machine learning algorithms in humid region of China’s east coast,” Catena, vol. 213, p. 106189, 2022, doi: https://doi.org/10.1016/j.catena.2022.106189.
  6. D. N. Panin, O. V. Osipov, and K. O. Bezlyudnikov, “The calculation of reflections of linear polarization plane electromagnetic wave from the boundary of the «air – wet soil» based on heterogeneous Maxwell Garnett and Brughehman models,” Physics of Wave Processes and Radio Systems, vol. 25, no. 2, pp. 22–27, 2022, doi: https://doi.org/10.18469/1810-3189.2022.25.2.22-27. (In Russ.)
  7. I. Yu. Buchnev et al., “Development of a mathematical model of a chiral metamaterial based on a cylindrical helical elements accounting for the dispersion and concentration of elements,” Physics of Wave Processes and Radio Systems, vol. 26, no. 2, pp. 36–47, 2023, doi: https://doi.org/10.18469/1810-3189.2023.26.2.36-47. (In Russ.)
  8. A. N. Bespalov et al., “Research of antenna complexes using chiral metamaterials and fractal geometry of radiators for MIMO systems,” Physics of Wave Processes and Radio Systems, vol. 23, no. 4, pp. 97–110, 2020, doi: https://doi.org/10.18469/1810-3189.2020.23.4.97-110. (In Russ.)
  9. F. Guerin et al., “Scattering of electromagnetic waves by helices and application to the modelling of chiral composites. II. Maxwell Garnett treatment,” Journal of Physics D: Applied Physics, vol. 28, no. 4, p. 643, 1995, doi: https://doi.org/10.1088/0022-3727/28/4/005.
  10. Recommendation ITU-R P.527-4 dated 06/2017. Electrical characteristics of the earth’s surface. Series R. Radio wave propagation, 2017. (In Russ.)
  11. B. J. Choudhury et al., “Effect of surface roughness on the microwave emission from soils,” Journal of Geophysical Research: Oceans, vol. 84, no. C9, pp. 5699–5706, 1979, doi: https://doi.org/10.1029/JC084iC09p05699.
  12. T. J. Schmugge, “Effect of texture on microwave emission from soils,” IEEE Transactions on Geoscience and Remote Sensing, vol. GE-18, no. 4, pp. 353–361, 1980, doi: https://doi.org/10.1109/TGRS.1980.350313.
  13. T. J. Jackson and P. E. O’neill, “Salinity effects on the microwave emission of soils,” IEEE Transactions on Geoscience and Remote Sensing, vol. GE-25, no. 2, pp. 214–220, 1987, doi: https://doi.org/10.1109/TGRS.1987.289820.
  14. S. A. Komarov et al., “The influence of humidity and salinity on radio emission of frozen soils in the microwave range,” Issledovanie Zemli iz kosmosa, no. 2, pp. 22–30, 1995, url: https://www.elibrary.ru/item.asp?id=12753101. (In Russ.)

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Wet soil as a two-component heterogeneous system

下载 (620KB)
3. Fig. 2. Geometry of the problem

下载 (369KB)
4. Fig. 3. Dependences of the absolute values of the reflection coefficients of an electromagnetic wave of horizontal polarization on frequency at different angles of incidence

下载 (335KB)
5. Fig. 4. Dependences of the modules of the reflection coefficients of an electromagnetic wave of vertical polarization on frequency at different angles of incidence

下载 (343KB)
6. Fig. 5. Dependences of the modules of the reflection coefficients of an electromagnetic wave of horizontal polarization on soil moisture at various frequencies

下载 (309KB)
7. Fig. 6. Dependences of the modules of the reflection coefficients of an electromagnetic wave of vertical polarization on soil moisture at various frequencies

下载 (309KB)
8. Fig. 7. Dependences of the absolute values of the reflection coefficients of an electromagnetic wave of horizontal polarization on the angle of incidence at various frequencies

下载 (387KB)
9. Fig. 8. Dependences of the modules of the reflection coefficients of an electromagnetic wave of vertical polarization on the angle of incidence at various frequencies

下载 (354KB)

版权所有 © Panin D.N., Osipov O.V., 2024

Creative Commons License
此作品已接受知识共享署名 4.0国际许可协议的许可

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».