Optimisation of business communication training in English using an artificial intelligence tool for text sentiment analysis
- 作者: Tupikova S.E.1, Pustovedova V.A.1
-
隶属关系:
- Saratov State University
- 期: 卷 30, 编号 4 (2025)
- 页面: 828-841
- 栏目: THEORY AND METHODS OF FOREIGN LANGUAGE TEACHING
- URL: https://journals.rcsi.science/1810-0201/article/view/328009
- DOI: https://doi.org/10.20310/1810-0201-2025-30-4-828-841
- ID: 328009
如何引用文章
全文:
详细
Importance. Artificial Intelligence (AI) is rapidly permeating all areas of professional activity, leading to increased demands for digital skills among specialists. One of the ways to prepare competitive personnel should be the integration of AI tools into the educational process. The aim of this research is to analyse the advantages of implementing the AI Email Tone Analyzer tool for the development of professional communication competencies among students in the field of business communication in English. In the context of rapid digital progress and the growing volume of communication via electronic means, it is essential not only to be able to articulate thoughts but also to correctly interpret the tone and emotional nuance of messages.Materials and Methods. Analysis of scientific literature related to the topic, comparison and summarisation of empirical data, as well as conducting an experiment. The materials for the research included business letters published on the 101 Business Letter website, as well as letters written by master’s students from the language faculty. The participants in the experiment consisted of 50 first and second-year students enrolled in the full-time Master’s programme (field 44.04.01 “Pedagogical Education”, profile “Foreign Languages in the Context of Contemporary Culture”). The experiment is conducted as part of the course “Business Foreign Language” at the Pedagogical Institute of Saratov State University named after N.G. Chernyshevsky.Results and Discussion. It has been proven that the use of the AI tool AI Email Tone Analyzer significantly enhances students’ proficiency in professional communication skills. The average number of errors in business correspondence has decreased by 42 %, while the average time taken to prepare letters has reduced by 7 minutes. Qualitative analysis also revealed an increase in students’ confidence in their skills and competencies – 66 % of students reported a reduction in anxiety level when writing business emails in English due to automated feedback. Furthermore, there was a significant increase in students’ engagement in the learning process – 78 % of respondents emphasized that they began to participate more frequently and willingly in written assignments and discussions in English after the implementation of this AI tool. 82 % of students started to consult their teacher less often when writing business emails, preferring to analyze the text with the help of artificial intelligence first indicating a rise in autonomy. In terms of communication processes, 100 % of students noted a marked increase in satisfaction with communication and a reduction in misunderstandings between business partners or interlocutors thanks to the tone adjustments made by the AI Email Tone Analyzer.Conclusion. The conducted research has led to the following key conclusions: the AI Email Tone Analyzer assists students in better recognising and adapting the tone of their messages according to the audience and situation, which promotes more effective communication; the use of the tool enables students to receive immediate feedback on how their messages may be perceived, fostering the development of critical thinking and self-reflection. The prospects for further research appear to lie in a more detailed analysis of the capabilities of the AI tool, the expansion of its application scope, including its integration into the process of learning foreign languages, as well as the examination of the impact of new technologies on organizational processes and behaviour.
作者简介
S. Tupikova
Saratov State University
Email: tupikovase@mail.ru
ORCID iD: 0000-0002-1236-9206
SPIN 代码: 9140-4100
Cand. Sci. (Philology), Associate Professor, Associate Professor of the Department of English Language and Teaching Methods
俄罗斯联邦, 83 Astrakhanskaya St., Saratov, 410012, Russian FederationV. Pustovedova
Saratov State University
编辑信件的主要联系方式.
Email: vikakiv2003@mail.ru
ORCID iD: 0009-0008-2799-3336
SPIN 代码: 8915-2236
Research Scholar of English Language and Teaching Methods Department
俄罗斯联邦, 83 Astrakhanskaya St., Saratov, 410012, Russian Federation参考
-
Абрамова И.Е. Применение технологий ИИ в иноязычном обучении взрослых: наставничество сверстников // Вестник Тамбовского университета. Серия: Гуманитарные науки. 2025. Т. 30. № 1. С. 35-49 https://doi.org/10.20310/1810-0201-2025-30-1-35-49, https://www.elibrary.ru/item.asp?id=80651677 Шамов А.Н., Панкратов Е.Н., Голованова Л.Н. Инновация в иноязычном образовании как идея с новыми возможностями // Вестник Тамбовского университета. Серия: Гуманитарные науки. 2025. Т. 30. № 1. С. 118-131. https://doi.org/10.20310/1810-0201-2025-30-1-118-131, https://www.elibrary.ru/item.asp?id=80651683 Титова С.В. Обучение иноязычной письменной речи в цифровой среде вуза / С. В. Титова // Вестник Тамбовского университета. Серия: Гуманитарные науки. 2023. Т. 28. № 2. С. 302-316. doi: 10.20310/10.20310/1810-0201-2023-28-2-302-316, https://elibrary.ru/item.asp?id=53738456 Богданова Т.Ф. Средства выражения тональности в условиях современной деловой интернет-переписки в русском, английском и китайском языках // Вестник Омского государственного педагогического университета. Гуманитарные исследования. 2023. №1 (38). С. 57-62. doi: 10.36809/2309-9380-2023-38-57-62, https://elibrary.ru/item.asp?id=50413792 Тупикова С.Е. Когнитивное моделирование реализации эмоционального аспекта посредством модусной категории тональности // Язык и мир изучаемого языка. 2015. № 6. С. 109-114. EDN VIL-NGZ. https://elibrary.ru/item.asp?id=25336701&ysclid=mciyxo2yql82857031 Тупикова С.Е. Категория тональности и уровни ее репрезентации в жанре светской хроники // Вопросы когнитивной лингвистики. 2011. № 4 (29). С. 68-73. EDN NYAHZZ. https://elibrary.ru/item.asp?id=16543072&ysclid=mciyngehnd971796921 Болдырев Н.Н. Интерпретация мира и знаний о мире в языке // Когнитивные исследования языка. 2014. № 19. С. 20-28. EDN SNHBJB. https://elibrary.ru/item.asp?id=21992940&ysclid=mciymhvi9b764377073 Титова С.В. Технологические решения на базе искусственного интеллекта в обучении иностранным языкам // Вестник Московского университета. Сер. 19. Лингвистика и межкультурная коммуникация. 2024. Т. 27. №2. С. 18-37. doi: 10.55959/MSU-2074-1588-19-27-2-2, https://elibrary.ru/OWSQVG?ysclid=mciyoeo5at197273606 Сысоев П.В. Обучение иностранному языку в эпоху искусственного интеллекта: спорные вопросы и перспективы методических исследований // Иностранные языки в школе. 2025. №2. С. 66-74. EDN PWHSIS. https://elibrary.ru/pwhsis?ysclid=mciywusyc6122106979 Crompton H., Burke D. Artificial intelligence in higher education: The state of the field // Interna-tional Journal of Educational Technology in Higher Education. 2023. Vol. 20. No. 1. P. 1-22. doi: 10.1186/s41239-023-00392-8 Surahman E., Wang T.H. Academic dishonesty and trustworthy assessment in online learning: A systematic literature review // Journal of Computer Assisted Learning. 2022. Vol. 38. No. 6. P. 1535-1553. doi: 10.1111/jcal.12708 Huang X., Zou D., Cheng G., Chen X., Xie H. Trends, research issues and applications of artificial intelligence in language education // Educational Technology & Society. 2023. Vol. 26. No. 1. P. 112-131. https://doi.org/10.30191/ETS.202301_26(1).0009 Su J., Yang W. Artificial intelligence in early childhood education: A scoping review // Computers & Education: Artificial Intelligence. 2022. Vol. 3. P. 1-13. doi: 10.1016/j.caeai.2022.100049 Hwang S. Examining the effects of artificial intelligence on elementary students' mathematics achievement: A meta-analysis // Sustainability. 2022. Vol. 14. No. 20. P. 1-18. doi: 10.3390/su142013185 Li S., Gu X. A risk framework for human-centered artificial intelligence in education // Educational Technology & Society. 2023. Vol. 26. No. 1, P. 187-202. https://doi.org/10.30191/ETS.202301_26(1).0014 Евстигнеев М.Н. Принципы обучения иностранному языку на основе технологий искусственного интеллекта // Вестник Тамбовского университета. Серия: Гуманитарные науки. 2024. Т. 29. № 2. С. 309-323. doi: 10.20310/1810-0201-2024-29-2-309-323, https://elibrary.ru/item.asp?id=65672658 Sharples M. Towards social generative AI for education: theory, practices and ethics // Learning: Research and Practice. 2023. Vol. 9. No. 2. Р. 159-167. https://doi.org/10.1080/23735082.2023.2261131 Godwin-Jones R. Partnering with AI: Intelligent writing assistance and instructed language learning // Language Learning & Technology. 2022. Vol. 26. No. 2. P. 5-24. http://doi.org/10125/73474 Wei L. Artificial intelligence in language instruction: impact on English learning achievement, L2 motivation, and self-regulated learning // Frontiers in Psychology. 2023. Vol. 14. URL: https://doi.org/10.3389/fpsyg.2023.1261955 (дата обращения: 28.06.2025). Пустоведова В.А., Тупикова С.Е., Быкова Н.О. Лингводидактический потенциал технологий искусственного интеллекта для обучения иностранным языкам (на примере естественнонаучного профиля) // Иностранные языки в школе. 2025. № 5. С. 70-75. EDN AUWUDB. https://elibrary.ru/item.asp?id=82497069 Банникова Л.В., Беззубкина В.И. Роль учителя иностранного языка в социально-профессиональной ориентации школьников в контексте иноязычного образования // Иностранные языки в школе. 2024. № 2. С. 45-50. EDN PTRTOE. https://elibrary.ru/ptrtoe?ysclid=mcj07jh15v103302112 Сысоев П.В., Филатов Е.М., Евстигнеев М.Н., Поляков О.Г., Евстигнеева И.А., Сорокин Д.О. Матрица инструментов искусственного интеллекта в лингвометодической подготовке будущих учителей иностранного языка // Вестник Тамбовского университета. Серия: Гуманитарные науки. 2024. Т. 29. № 3. С. 559-588. https://doi.org/10.20310/1810-0201-2024-29-3-559-588 , https://elibrary.ru/jazkme Anh L.T.Q. AI Chatbots in English language learning: a critical review // Journal of Knowledge Learning and Science Technology. 2024. Vol. 3. No 2. Pp. 185-195. https://doi.org/10.60087/jklst.vol3.n2.p195
补充文件
