Developing prompt engineering skills in the pre-service training of foreign language educator


Cite item

Full Text

Abstract

Importance. The integration of artificial intelligence technologies into the educational process is one of the key areas of digital transformation of education in Russia. In the context of the rapid development of AI technologies, there is an urgent need for pre-service educators to develop prompt engineering skills that allow them to formulate requests for generative AI to solve specific methodological problems. The formulation of high-quality prompt makes it possible to improve the quality of feedback from generative AI and optimize the processes of pedagogical planning, the development of educational and control materials, the adaptation of the learning content to the individual characteristics of students, etc. Ignoring this aspect of pre-service educators training now can lead to a professional backlog of graduates and their lack of competitiveness in the labor market in the future. In this regard, prompt engineering training should be considered an imperative of modern education. The purpose of this study is to identify the effectiveness of the prompt engineering skills development methodology for pre-service foreign language educators.Research Methods. Theoretical methods were used such as the study of scientific and methodological literature on research issues, analysis, generalization and classification of information. In order to test the effectiveness of the proposed methodology, an experimental training was conducted aimed at developing the skills of prompt engineering among pre-service foreign language educators. 52 students of the 1st-4th courses of the Institute of Pedagogy, studying bachelor’s degrees in the fields of “Pedagogical Education (English Language profile)” and “Linguistics (Theory and Methodology of Teaching Foreign Languages and Cultures" profile)” at Derzhavin Tambov State University, took part in the pilot training. The object of control was the nomenclature of prompt engineering skills of a foreign language educator, represented by ten skills reflecting the specifics of teaching a foreign language.Definition of Concepts. The main concept in the study is prompt engineering or prompting. The paper describes in detail the basic and advanced prompting techniques aimed at obtaining highquality feedback from generative AI.Results and Discussion. The methodology for the developing prompt engineering skills in the pre-service training of foreign language educators has been tested during experimental training. Obvious progress is observed in the following controlled parameters: the skill to formulate prompt for organizing speech communication in a foreign language (t = 9.8 at p < 0.001), the skill to formulate prompt in order to find the necessary information, translate or explain complex educational material (t = 6.2 at p < 0.001), the skill to formulate prompt for developing a plan or lesson fragment (t = 10.1 at p < 0.001), the skill to formulate suggestions for developing training exercises for developing lexical and grammatical skills (t = 7.3 at p < 0.001), the skill to formulate prompt for text generation (t = 5.5 at p < 0.001), the skill to formulate prompt for text adaptation (t = 5.8 at p < 0.001). The following parameters remained without significant progress: the skill to formulate prompt for creating technological lesson maps (t = 7.3 at p > 0.05), the skill to formulate prompt for developing control and measuring materials (t = 1.1 at p > 0.05), the skill to formulate prompt for conducting a comparative analysis of two or more texts (t = 0.9 at p > 0.05), the skill to formulate suggestions for evaluating written creative work (t = 0.6 at p > 0.05).Conclusion. Prompt engineering plays a significant role in the system of linguistic and methodological training of pre-service foreign language educators based on AI technologies, as it allows them to master modern techniques of interaction with generative AI. For junior students, it is advisable to focus on the basic skills of interacting with generative AI, and for senior students – on solving specific methodological tasks. Prompt engineering training should be continuous and start from the first year, integrating into the learning process through individual disciplines, for example, through “Introduction to Artificial Intelligence” or minors, so that senior students can apply their knowledge to solve more complex cognitive tasks. The technique of autoprompting allows students to visually study the anatomy of high-quality prompt and at the same time develop critical thinking by analyzing and refining AI-generated prompt. The perspective of the study is to observe the effectiveness of the autoprompting technique in the pre-service training of foreign language educators. The results obtained can be used in further research on the study of prompt engineering techniques for educators or students of pedagogical training areas, for the development of author's methods of teaching prompt engineering to educators, as well as in the methodology of teaching a foreign language.

About the authors

M. N. Evstigneev

Derzhavin Tambov State University

Email: maximevstigneev@bk.ru
ORCID iD: 0000-0003-2664-9134

Cand. Sci. (Education), Associate Professor, Associate Professor of Linguistics and Linguodidactics Department

Russian Federation, 33 Internatsionalnaya St., Tambov, 392000, Russian Federation

I. A. Evstigneeva

Derzhavin Tambov State University

Author for correspondence.
Email: ilona.frolkina@mail.ru
ORCID iD: 0000-0002-1198-0695

Cand. Sci. (Education), Associate Professor, Head of Methodology and Technology of Professional Education Department

Russian Federation, 33 Internatsionalnaya St., Tambov, 392000, Russian Federation

References

  1. Grinshkun V.V., Suvorova T.N. (2024). Teacher training in the conditions of digital transformation of the educa-tion system. Vestnik Moskovskogo universiteta. Seriya 20: Pedagogicheskoe obrazovanie = Lomonosov Peda-gogical Education Journal, vol. 22, no. 1, pp. 95-110. (In Russ.) https://doi.org/10.55959/lpej-24-05, https://elibrary.ru/bcerxq
  2. Sysoyev P.V., Evstigneev M.N., Sorokin D.O. (2025). Structural model of pre-service teacher training based on artificial intelligence technologies. Perspektivy nauki i obrazovaniya = Perspectives of Science and Education, no. 3 (75), pp. 139-155. (In Russ.) https://doi.org/10.32744/pse.2025.3.9, https://elibrary.ru/flenno
  3. Sysoyev P.V., Evstigneev M.N. (2025). Integration of artificial intelligence technologies in language and metho-dological pre-service teachers’ training. Yazyk i kul’tura = Language and Culture, no. 69, pp. 204-219. (In Russ.) https://doi.org/10.17223/19996195/69/10, https://elibrary.ru/guzvbi
  4. Titova S.V., Kharlamenko I.V. (2025). Training of staff for the use of artificial intelligence in foreign language teaching. Vestnik Moskovskogo universiteta. Seriya 19: Lingvistika i mezhkul’turnaya kommunikatsiya = Mos-cow State University Bulletin. Series 19. Linguistics and Intercultural Communication, no. 1, pp. 66-84. (In Russ.) https://doi.org/10.55959/MSU-2074-1588-19-28-1-5, https://elibrary.ru/froxrr
  5. Evstigneev M.N. (2024). A model of language and methodological pre-service teachers’ training based on artifi-cial intelligence technologies. Vestnik Tambovskogo universiteta. Seriya: Gumanitarnye nauki = Tambov University Review. Series: Humanities, vol. 29, no. 5, pp. 1222-1238. (In Russ.) https://doi.org/10.20310/1810-0201-2024-29-5-1222-1238, https://elibrary.ru/ipnyou
  6. Klochikhin V.V., Polyakov O.G. (2023). Artificial intelligence technologies: corpus analysis tools in foreign language teaching. Inostrannye yazyki v shkole = Foreign Languages at School, no. 3, pp. 24-30. (In Russ.) https://elibrary.ru/bdttfe
  7. Sysoyev P.V., Ivchenko M.I. (2025). Development of learners’ foreign language pronunciation skills on the basis of artificial intelligence tools. Perspektivy nauki i obrazovaniya = Perspectives of Science and Education, no. 2 (74), pp. 600-614. (In Russ.) https://doi.org/10.32744/pse.2025.2.38, https://elibrary.ru/jrddjj
  8. Lobeeva P.I. (2023). The didactic potential of using chatbots in teaching and learning English phrasal verbs. Vestnik Tambovskogo universiteta. Seriya: Gumanitarnye nauki = Tambov University Review. Series: Hu-manities, vol. 28, no. 6, pp. 1467-1476. (In Russ.) https://doi.org/10.20310/1810-0201-2023-28-6-1467-1476, https://elibrary.ru/fmyeoc
  9. Chetyrina N.V. (2024). Organizational and pedagogical conditions for teaching students foreign language written interaction based on practice with chatbots. Vestnik Tambovskogo universiteta. Seriya: Gumanitarnye nauki = Tambov University Review. Series: Humanities, vol. 29, no. 6, pp. 1590-1607. (In Russ.) https://doi.org/10.20310/1810-0201-2024-29-6-1590-1607, https://elibrary.ru/egfqym
  10. Avramenko A.P., Bulanova E.R. (2024). Prospects for the development of student self-study in the context of integrating artificial intelligence technologies into foreign language education. Rhema. Rema, no. 1, pp. 79-91. (In Russ.) https://doi.org/10.31862/2500-2953-2024-1-79-91, https://elibrary.ru/brxmbj
  11. Bogolepova S.V., Zharkova M.G. (2024). Researching the potential of generative language models for essay evaluation and feedback provision. Otechestvennaya i zarubezhnaya pedagogika, vol. 1, no. 5, pp. 123-137. (In Russ.) https://doi.org/10.24412/2224-0772-2024-101-123-137, https://elibrary.ru/mhusof
  12. Evstigneev M.N., Sysoyev P.V., Evstigneeva I.A. (2024). The competence of a foreign language teacher in the field of artificial intelligence. Inostrannye yazyki v shkole = Foreign Languages at School, no. 3, pp. 90-96. (In Russ.) https://elibrary.ru/auprsp
  13. Sysoyev P.V. (2025). A modern teacher’s competence in the field of artificial intelligence: structure and content. Vysshee obrazovanie v Rossii = Higher Education in Russia, vol. 34, no. 6, pp. 58-79. (In Russ.) https://doi.org/10.31992/0869-3617-2025-34-6-58-79, https://elibrary.ru/zjmqfd
  14. Titova S.V., Kharlamenko I.V. (2025). The framework of professional competence for foreign language teachers utilizing artificial intelligence. Yazyk i kul’tura = Language and Culture, no. 69, pp. 220-246. (In Russ.) https://doi.org/10.17223/19996195/69/11, https://elibrary.ru/eceboi
  15. Sysoyev P.V., Filatov E.M., Sorokin D.O. (2024). Feedback in foreign language teaching: from information technologies to artificial intelligence. Yazyk i kul’tura = Language and Culture, no. 65, pp. 242-261. (In Russ.) https://doi.org/10.17223/19996195/65/11, https://elibrary.ru/plzyov
  16. Yong G., Jeon K., Gil D., Lee G. (2023). Prompt engineering for zero‐shot and few‐shot defect detection and classification using a visual‐language pretrained model. Computer‐Aided Civil and Infrastructure Engineering, vol. 38, no. 11, pp. 1536-1554. https://doi.org/10.1111/mice.12954
  17. Lee U., Jung H., Jeon Y., Sohn Y., Hwang W., Moon J., Kim H. (2024). Few-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in English education. Education and Information Technologies, vol. 29, no. 9, pp. 11483-11515. https://doi.org/10.1007/s10639-023-12249-8
  18. Wei J., Wang X., Schuurmans D., Bosma M., Xia F., Chi E., Le Q.V., Zhou D. (2022). Chain-of-thought prompting elicits reasoning in large language models. Advances in Neural Information Processing Systems, vol. 35, pp. 24824-24837. https://doi.org/10.48550/arXiv.2201.11903
  19. Lee D., Palmer E. (2025). Prompt engineering in higher education: a systematic review to help inform curricula. International Journal of Educational Technology in Higher Education, vol. 22, no. 1, p. 7. https://doi.org/10.1186/s41239-025-00503-7
  20. Park J., Choo S. (2025). Generative AI prompt engineering for educators: Practical strategies. Journal of Special Education Technology, vol. 40, no. 3, pp. 411-417. https://doi.org/10.1177/01626434241298954
  21. Federiakin D., Molerov D., Zlatkin-Troitschanskaia O., Maur A. (2024). Prompt engineering as a new 21st cen-tury skill. Frontiers in Education, vol. 9, art. 1366434. https://elibrary.ru/ogiefs, https://doi.org/10.3389/feduc.2024.1366434
  22. Deshmukh N.D., Shrouty V.A. (2025). Prompt engineering with ChatGPT – a paradigm shift in education: a guide for school teachers. Indian Journal of Educational Technology, vol. 7, no. 2, pp. 207-228. https://doi.org/10.1007/s10439-023-03272-4
  23. Heston T.F., Khun C. (2023). Prompt engineering in medical education. International Medical Education, vol. 2, no. 3, pp. 198-205. https://elibrary.ru/senkcn, https://doi.org/10.3390/ime2030019
  24. Jeon S., Kim H.G. (2025). A comparative evaluation of chain-of-thought-based prompt engineering techniques for medical question answering. Computers in Biology and Medicine, vol. 196, art. 110614. https://doi.org/10.1016/j.compbiomed.2025.110614
  25. Chubov S.A. (2023). Pedagogical conditions that ensure the effectiveness of the use of artificial intelligence in the process of forming the professional competence of students in the specialty 33.02.01 Pharmacy. Izvestiya Tul’skogo gosudarstvennogo universiteta. Pedagogika = Izvestiya Tula State University, no. 4, pp. 112-118. (In Russ.) https://elibrary.ru/kzwzlq
  26. Zambrano G. (2024). Case law as data: Prompt engineering strategies for case outcome extraction with large language models in a zero-shot setting. Law, Technology and Humans, vol. 6, no. 3, pp. 80-101. https://elibrary.ru/fydsmf, https://doi.org/10.5204/lthj.3623
  27. Sysoyev P.V., Kharin V.V., Gavrilov M.V. (2024). Method of teaching law students to draft international legal documents based on artificial intelligence tools as part of an integrated course. Yazyk i kul’tura = Language and Culture, no. 67, pp. 272-289. (In Russ.) https://doi.org/10.17223/19996195/67/15, https://elibrary.ru/rfqxpk
  28. Kirpichev A.E. (2024). Prompts for generative artificial intelligence in legal discourse. Vestnik Rossiiskogo un-iversiteta druzhby narodov. Seriya: Yuridicheskie nauki = Rudn Journal of Law, vol. 28, no. 4, pp. 906-918. (In Russ.) https://doi.org/10.22363/2313-2337-2024-28-4-906-918, https://elibrary.ru/iloqxb
  29. Kropachev N.M., Serkov P.P., Sevryukov S.Yu., Arkhipov V.V. (2025). SE of methods of intellectual text processing and large language models for analysis of information about legal relations in normative legal acts. Pravovedenie, vol. 69, no. 1, pp. 176-194. (In Russ.) https://doi.org/10.21638/spbu25.2025.110195, https://elibrary.ru/cyrmmz
  30. Araújo J.L., Saúde I. (2024). Can ChatGPT enhance chemistry laboratory teaching? Using prompt engineering to enable AI in generating laboratory activities. Journal of Chemical Education, vol. 101, no. 5, pp. 1858-1864. https://doi.org/10.1021/acs.jchemed.3c00745, https://elibrary.ru/dwmqbr
  31. Tassoti S. (2024). Assessment of students use of generative artificial intelligence: Prompting strategies and prompt engineering in chemistry education. Journal of Chemical Education, vol. 101, no. 6, pp. 2475-2482. https://doi.org/10.1021/acs.jchemed.4c00212, https://elibrary.ru/jzryeq
  32. Lu Y., Hu X., Zhang D. (2025). A Prompt Engineering Method for Generating Emotional Images for Psycholog-ical Research. Affective Science, pp. 1-14. https://doi.org/10.1007/s42761-025-00315-y
  33. Lukinskii I.S., Gorsheneva I.A. (2024). Prompt engineering in the educational process and scientific activity or to the question of the necessity of training to work with artificial intelligence. Psikhologiya i pedagogika sluz-hebnoi deyatel’nosti = Psychology and Pedagogy of Professional Activity, no. 4, pp. 148-154. (In Russ.) https://doi.org/10.24412/2658-638X-2024-4-148-154, https://elibrary.ru/hicawx
  34. Ivanishcheva O.N. (2025). Using chatbots in learning Russian as a native language: problems and prospects. Chelovek. Kul’tura. Obrazovanie = Human. Culture. Education, no. 1 (55), pp. 162-177. (In Russ.) https://doi.org/10.34130/2233-1277-2025-1-162, https://elibrary.ru/bnnbyr
  35. Isemonger I. (2023). Generative language models in education: Foreign language learning and the teacher as prompt engineer. TEFL Praxis Journal, vol. 2, pp. 3-17. https://doi.org/10.5281/zenodo.10402411
  36. Zakhtser E.M. (2025). Prompt engineering in English language teaching: theory and practice. Gumanitarnye nauki. Vestnik Finansovogo universiteta = Humanities and Social Sciences. Bulletin of the Financial Uni-versity, vol. 15, no. 2, pp. 122-139. (In Russ.) https://doi.org/10.26794/2226-7867-2025-15-2-122-139, https://elibrary.ru/ktefoc
  37. Lin Z. (2024). Prompt engineering for applied linguistics: elements, examples, techniques, and strategies. English Language Teaching, vol. 17, no. 9, pp. 1-14. https://doi.org/10.5539/elt.v17n9p14, https://elibrary.ru/wvjeou
  38. Emily S. (2025). Prompt engineering as 21st-century literacy: a K-12 curriculum design and assessment frame-work. Artificial Intelligence Education Studies, vol. 1, no. 2, pp. 32-47. https://doi.org/10.6914/aiese.010203
  39. Sysoyev P.V. (2024). Ethics and AI-plagiarism in an academic environment: students’ understanding of com-pliance with author’s ethics and the problem of plagiarism in the process of interaction with generative artificial intelligence. Vysshee obrazovanie v Rossii = Higher Education in Russia, vol. 33, no. 2, pp. 31-53. (In Russ.) https://doi.org/10.31992/0869-3617-2024-33-2-31-53, https://elibrary.ru/vtaiuo
  40. Evstigneev M.N. (2024). Planning a foreign language lesson using generative artificial intelligence technologies. Vestnik Tambovskogo universiteta. Seriya: Gumanitarnye nauki = Tambov University Review: Series Humani-ties, vol. 29, no. 3, pp. 617-634. (In Russ.) https://doi.org/10.20310/1810-0201-2024-29-3-617-634, https://elibrary.ru/ahylwe

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».