The use of multifunctional statistical criteria in the development of technological aspects of self-design of students’ educational and professional activities

Cover Page

Cite item

Full Text

Abstract

Researchers in the humanities almost always have to deal with the problem of statistical processing of results and their interpretation. This is a rather laborious and painstaking work, which can be greatly simplified through the use of multifunctional statistical criteria. Within the framework of the study related to the problem of self-design of educational and professional activities of students, the analysis of the effectiveness of the introduction of technological elements using multifunctional criteria was carried out: φ* criterion – Fisher’s angular transformation and binomial criterion m. The statistical significance of the results of the introduction at a certain stage of the technology of the workshop is revealed, which makes it possible to study and apply the elements of self-management in the educational and professional activities of students. For promising purposes, it is proposed to create an automated system that implements the selection of the appropriate criterion for the problem to be solved and the verification of the statistical hypothesis put forward by the researcher.

About the authors

T. A. Erina

Belgorod State National Research University

Email: erina@bsu.edu.ru
ORCID iD: 0000-0003-4968-6480

Candidate of Pedagogy, Associate Professor of Applied Mathematics and Computer Modeling Department

Russian Federation, 85 Pobedy St., Belgorod 308015, Russian Federation

N. N. Motkina

Belgorod State National Research University

Author for correspondence.
Email: motkina@bsu.edu.ru
ORCID iD: 0000-0002-4535-7973

Candidate of Physics and Mathematics, Associate Professor, Associate Professor Mathematics Department

Russian Federation, 85 Pobedy St., Belgorod 308015, Russian Federation

References

  1. Kremer N.S. Matematicheskaya statistika [Math Statistics]. Moscow, Urait Publ., 2018, 259 p. (In Russian).
  2. Ayvazyan S.A., Mkhitaryan V.S. Prikladnaya statistika. Osnovy ekonometriki: v 2 t. T. 1. Teoriya veroyatnostey i prikladnaya statistika [Applied Statistics. Fundamentals of Econometrics: in 2 vols. Vol. 1. Probability Theory and Applied Statistics]. Moscow, Unity Publ., 2001, 656 p. (In Russian).
  3. Erina T.A. Etapy obucheniya studentov vuza samoproyektirovaniyu uchebno-professional’noy deyatel’nosti [Stages of training of high education institution students to self-management in learning and vocational activi-ties]. Vestnik Tambovskogo universiteta. Seriya: Gumanitarnyye nauki – Tambov University Review. Series: Humanities, 2009, no. 2 (70), pp. 219-222. (In Russian).
  4. Erina T.A. K voprosu ob obuchenii studentov vuza samoproyektirovaniyu uchebno-professional’noy deya-tel’nosti [To a question of education students to self-design of the learning and professional activities]. Mir pe-dagogiki i psikhologii [World of Pedagogy and Psychology], 2018, no. 12 (29), pp. 96-100. (In Russian).
  5. Gubler E.V. Vychislitel’nyye metody analiza i raspoznavaniya patologicheskikh posledstviy [Computational Methods of Analysis and Recognition of Pathological Consequences]. Leningrad, Meditsina Publ., 1978, 296 p. (In Russian).
  6. Sidorenko E.V. Metody matematicheskoy obrabotki v psikhologii [Methods of Mathematical Processing in Psy-chology]. St. Petersburg, LLC “Rech” Publ., 2010, 350 p. (In Russian).
  7. Nasledov A.D. Mnogomernyye metody matematicheskoy obrabotki v psikhologii [Multidimensional Methods of Mathematical Processing in Psychology]. St. Petersburg, Rech’ Publ., 2006. (In Russian).

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).