Dynamics of adhesive systems development in dental practice

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: Тhe article presents a review of adhesive systems in terms of their component chemical composition. Seven generations of adhesive systems have been studied. The first generation of adhesive systems emerged in the 1970s. The result of the action was the bond reaction of the adhesive with calcium enamel and dentin. Glycerophosphoric acid dimethacrylate was used. The use of methacrylates in adhesive systems was widespread because polymers with high biological indifference to biological objects are formed when they are polymerized in combination with acrylic resin. The second generation used a lubricated layer to obtain higher adhesion rates. Chloro-substituted phosphate esters of various monomers were used as active groups. The main compound mechanism remained the ionic binding of calcium dentine by chlorophosphate groups. The third generation used a lubricated layer to attach the composite to the dentin in the same way as the second generation. In the chemical composition, aluminosilicates, aluminitrates, hydroxyethylmethacrylate (HEMA), 4-methacryloxyethyltrimethyl anhydride (4-META), and other substances were most often used as active groups. The fourth generation is a multicomponent system that provides a three- and four-step application technique. These systems contain three to four components (conditioner, primer, and adhesive). The technique of their use includes three stages, namely, etching with 37% orthophosphoric acid, priming, and bonding. Adhesive systems of the fifth generation are two-component systems that provide a two-step technique of application. First, acid (etching) is applied to the tooth tissue, and second, the adhesive itself. Adhesive systems of the sixth and seventh generations are one-component self-etching since the adhesive contains acid. From a chemical point of view, these adhesive systems are a mixture of phosphoric esters and adhesive substances. Therefore, analyzing the adhesive composition of seven generations in such way, the mechanism of chemical interaction of adhesive components with hydroxyapatite and dentin has not significantly changed; however, the number of hydrophobic fragments has increased, which significantly increases dentin contact.

About the authors

Galina E. Bordina

Tver State Medical University

Email: gbordina@yandex.ru
ORCID iD: 0000-0001-6375-7981

MD, Cand. Sci. (Biol.), Associate Professor

Russian Federation, Tver

Nadezhda P. Lopina

Tver State Medical University

Author for correspondence.
Email: nadezhda_lopina@mail.ru
ORCID iD: 0000-0002-7213-1531

MD, Cand. Sci. (Chem.), Professor

Russian Federation, Tver

Alexey A. Andreev

Tver State Medical University

Email: aandreev01@yandex.ru
ORCID iD: 0000-0002-1012-9356

Student

Russian Federation, Tver

Ilya A. Nekrasov

Peoples’ Friendship University of Russia

Email: ilya.nekrasov.01@bk.ru
ORCID iD: 0000-0002-7240-1319

Student

Russian Federation, Moscow

References

  1. Mel’kumyan TV, Kakhkharova DZh, Kamilov NKh, et al. Sravnitel’nyi analiz samoprotravlivayushchikh adgezivnykh sistem i sistem total’nogo travleniya in vitro. Stomatologiya. 2017;(2):31–33. (In Russ).
  2. Sarikaya R, Song L, Yuca E, et al. Bioinspired multifunctional adhesive system for next generation bio-additively designed dental restorations. J Mech Behav Biomed Mater. 2021;113:104135. doi: 10.1016/j.jmbbm.2020.104135
  3. Abramova MYa, Fironova MA. Analiz ispol’zovaniya sovremennykh adgezivnykh sistem, primenyaemykh dlya fiksatsii nes”emnoi apparatury (breket-sistemy). In: VII Mezhdunarodnaya nauchno-prakticheskaya konferentsiya Innovatsii v otraslyakh narodnogo khozyaistva kak faktor resheniya sotsial’no-ekonomicheskikh problem sovremennosti. Moscow; 2017. P:300–305. (In Russ).
  4. Aslanyan MA, Eremin OV, Trufanova YY, et al. Use of adhesive systems in dentistry: past and present. Saratov journal of medical scientific research. 2018;14(2):234–239. (In Russ).
  5. Kalyoncu IO, Eren-Giray F, Huroglu N, et al. Microleakage of Different Adhesive Systems in Primary Molars Prepared by Er: YAG Laser or bur. Niger J Clin Pract. 2018;21(2):242–247. doi: 10.4103/njcp.njcp_299_16
  6. Romanenko IG, Chepurova NI, Zueva AS. Selection of adhesive systems in treatment of tooth root caries (literature review). Bulletin of the Medical Institute “REAVIZ” (REHABILITATION, DOCTOR AND HEALTH). 2021;11(2):50–61. (In Russ). doi: 10.20340/vmi-rvz.2021.2.CLIN.2
  7. Nikaido T, Takagaki T, Sato T, et al. Fluoride-Releasing Self-Etch Adhesives Create Thick ABRZ at the Interface. Biomed Res Int. 2021:9731280. doi: 10.1155/2021/9731280
  8. Sangonova ND, Frolova KE, Frolova VV. Adgezivnye sistemy i ikh rol’ v sovremennoi stomatologii. Tendentsii razvitiya nauki i obrazovaniya. 2021;(76–1):15–16. (In Russ). doi: 10.18411/lj-08-2021-03
  9. Iyashvili LV, Vinnichenko YA, Vinnichenko AV. Comparative assessment of the human blood plasma impact on the properties of various adhesive systems. Stomatologiya. 2020;99(2):17. (In Russ). doi: 10.17116/stomat20209902117
  10. Bolgul BS, Ayna B, Simsek I, et al. Leakage testing for different adhesive systems and composites to permanent teeth. Niger J Clin Pract. 2017;20(7):787–791. doi: 10.4103/1119-3077.171417
  11. Golovenkina AV, Yartseva AV, Polyakova EV, Ignatova TS. Sravnitel’naya kharakteristika adgezivnykh sistem poslednego pokoleniya, primenyaemye v sovremennoi klinicheskoi stomatologii, pri lechenii srednego kariesa. Evraziiskoe Nauchnoe Ob”edinenie. 2017;1(5):53–55. (In Russ).
  12. Mitronin AV, Kuvaeva MN, Vovk SN. Laboratory estimation of the hybrid zone structure of the adhesive system based on the ormoker at filling class I cavity. Endodontics Today. 2019;17(3):21–24. (In Russ). doi: 10.36377/1683–2981-2019-17-3-21-24
  13. Jun SK, Yang SA, Kim YJ, et al. Multi-functional nano-adhesive releasing therapeutic ions for MMP-deactivation and remineralization. Sci Rep. 2018;8(1):5663. doi: 10.1038/s41598-018-23939-6
  14. Daironas E, Daironas S, Burov A, et al. Adhesive Systems in the Practice of a Dentist Doctor. Actual problems in dentistry. 2020; 16(1):178–181. (In Russ). doi: 10.18481/2077-7566-20-16-1-178-181
  15. Vaheed NA, Gupta M, David SA, et al. In vitro Analysis of Shear Bond Strength and Adhesive Remnant Index of Stainless Steel Brackets with Different Adhesive Systems to Enamel. J Contemp Dent Pract. 2018;19(9):1047–1051.
  16. Tsujimoto A, Barkmeier WW, Takamizawa T, et al. Simulated localized wear of resin luting cements for universal adhesive systems with different curing mode. J Oral Sci. 2018;60(1):29–36. doi: 10.2334/josnusd.16-0815
  17. Kharaeva ZF, Blieva LZ, Sheregov AK, et al. Comparative analysis of adhesive properties of ceramic and metal bracket systems. Klinicheskaya stomatologiya. 2019(2):42–44. (In Russ). doi: 10.37988/1811-153x_2019_2_42
  18. Namura Y, Takamizawa T, Uchida Y, et al. Effects of composition on the hardness of orthodontic adhesives. J Oral Sci. 2020;62(1):48–51. doi: 10.2334/josnusd.19-0035
  19. Postnikov MA, Shcherbakova EA, Shcherbakov MV, Simanovskaya OE. The choice of an adhesive system in the practice of a dentist. Aspirantskiy Vestnik Povolzhiya. 2020;20(5-6):81–88. (In Russ). doi: 10.17816/2072-2354.2020.20.3.81-88
  20. Mamedov AA, Loschenov VB, Morozova NS, et al. Study of penetration ability of adhesive systems on temporary teeth by confocal microscopy. Biomedical Photonics. 2020;9(2):4–9. (In Russ). doi: 10.24931/2413–9432–2020–9–2–4–9.
  21. Zhou W, Liu S, Zhou X, et al. Modifying Adhesive Materials to Improve the Longevity of Resinous Restorations. Int J Mol Sci. 2019;20(3). doi: 10.3390/ijms20030723
  22. Gundogdu M, Aladag LI. Effect of adhesive resin cements on bond strength of ceramic core materials to dentin. Niger J Clin Pract. 2018;21(3):367–374. doi: 10.4103/njcp.njcp_10_17
  23. Borges AB, Abu Hasna A, Matuda AGN, et al. Adhesive systems effect over bond strength of resin-infiltrated and de/remineralized enamel. F1000Res. 2019;8:1743. doi: 10.12688/f1000research.20523.1
  24. Dressano D, Salvador MV, Oliveira MT, et al. Chemistry of novel and contemporary resin-based dental adhesives. J Mech Behav Biomed Mater. 2020;110:103875. doi: 10.1016/j.jmbbm.2020.103875
  25. Bertolo MVL, Guarda MB, Fronza BM, et al. Electric current effects on bond strength, nanoleakage, degree of conversion and dentinal infiltration of adhesive systems. J Mech Behav Biomed Mater. 2021;119:104529. doi: 10.1016/j.jmbbm.2021.104529
  26. Carneiro KK, Araujo TP, Carvalho EM, et al. Bioactivity and properties of an adhesive system functionalized with an experimental niobium-based glass. J Mech Behav Biomed Mater. 2018;78:188–195. doi: 10.1016/j.jmbbm.2017.11.016
  27. Putzeys E, Duca RC, Coppens L, et al. In-vitro transdentinal diffusion of monomers from adhesives. J Dent. 2018;75:91–97. doi: 10.1016/j.jdent.2018.05.023
  28. Soto-Montero J, Nima G, Dias CTS, et al. Influence of beam homogenization on bond strength of adhesives to dentin. Dent Mater. 2021;37(2):e47–e58. doi: 10.1016/j.dental.2020.10.003
  29. Cevval Ozkocak BB, Aytac Bal F. Effect of diode laser-assisted bleaching on the bond strength of different adhesive systems to enamel: Interfacial SEM analysis. Microsc Res Tech. 2021;84(7):1542–1552. doi: 10.1002/jemt.23711
  30. Mochalov I, Keian D, Pasichnyk M, Kravcov R. The Strength of Adhesion to Hard Tissues of Non-Vital Teeth of Dental Photocomposite Filling (Restorative) Materials in Combination with Various Adhesive Systems. Georgian Med News. 2021;(315):61–65. (In Russ).
  31. Caldas IP, Alves GG, Barbosa IB, et al. In vitro cytotoxicity of dental adhesives: A systematic review. Dent Mater. 2019;35(2):195–205. doi: 10.1016/j.dental.2018.11.028
  32. Gill SK, Roohpour N, An Y, et al. Hydrophobic and hydrophilic effects on water structuring and adhesion in denture adhesives. J Biomed Mater Res A. 2018;106(5):1355–1362. doi: 10.1002/jbm.a.36341
  33. Han B, Xia W, Liu K, et al. Janus Nanoparticles for Improved Dentin Bonding. ACS Appl Mater Interfaces. 2018;10(10):8519–8526. doi: 10.1021/acsami.7b19652
  34. Gill SK, Roohpour N, Topham PD, Tighe BJ. Tunable denture adhesives using biomimetic principles for enhanced tissue adhesion in moist environments. Acta Biomater. 2017;63:326–335. doi: 10.1016/j.actbio.2017.09.004
  35. Giacomini MC, Scaffa PMC, Goncalves RS, et al. Profile of a 10-MDP-based universal adhesive system associated with chlorhexidine: Dentin bond strength and in situ zymography performance. J Mech Behav Biomed Mater. 2020;110:103925. doi: 10.1016/j.jmbbm.2020.103925
  36. Cavalheiro A, Cruz J, Sousa B, et al. Dentin adhesives application deviations: Effects on permeability and nanoleakage. Dent Mater J. 2021;40(5):1160–1168. doi: 10.4012/dmj.2020-404
  37. Rodriguez-Chavez JA, Arenas-Alatorre JA, Flores-Ruiz HM, et al. Evaluation of enamel loss by scanning electron microscopy after debonding brackets place with four different adhesives. Microsc Res Tech. 2021;84(5):912–920. doi: 10.1002/jemt.23652
  38. Nima G, Cavalli V, Bacelar-Sa R, et al. Effects of sodium hypochlorite as dentin deproteinizing agent and aging media on bond strength of two conventional adhesives. Microsc Res Tech. 2020;83(2):186–195. doi: 10.1002/jemt.23401
  39. Fu J, Saikaew P, Kawano S, et al. Effect of air-blowing duration on the bond strength of current one-step adhesives to dentin. Dent Mater. 2017;33(8):895–903. doi: 10.1016/j.dental.2017.03.015
  40. Takamizawa T, Imai A, Hirokane E, et al. SEM observation of novel characteristic of the dentin bond interfaces of universal adhesives. Dent Mater. 2019;35(12):1791–1804. doi: 10.1016/j.dental.2019.10.006
  41. Cetin AR, Dinc H. Effects of artificial aging on the bond strengths of universal dental adhesives. Niger J Clin Pract. 2020;23(8): 1148–1154. doi: 10.4103/njcp.njcp_435_19
  42. Nayif MM, Otsuki M, Tagami J. Bonding performance of self-etch adhesives to enamel bleached with different peroxide concentrations. Braz Dent J. 2021;32(5):96–104. doi: 10.1590/0103-6440202104046
  43. De Assis C, Lemos C, Gomes J, et al. Clinical Efficiency of Self-etching One-Step and Two-Step Adhesives in NCCL: A Systematic Review and Meta-analysis. Oper Dent. 2020;45(6):598–607. doi: 10.2341/19-185-L
  44. Torres-Mendez F, Martinez-Castanon GA, Torres-Gallegos I, et al. Effects of silver nanoparticles on the bonding of three adhesive systems to fluorotic enamel. Dent Mater J. 2017;36(3):266–274. doi: 10.4012/dmj.2015-299
  45. Zecin-Deren A, Sokolowski J, Szczesio-Wlodarczyk A, et al. Multi-Layer Application of Self-Etch and Universal Adhesives and the Effect on Dentin Bond Strength. Molecules. 2019;24(2). doi: 10.3390/molecules24020345
  46. Donmez N, Gungor AS, Karabulut B, Siso SH. Comparison of the micro-tensile bond strengths of four different universal adhesives to caries-affected dentin after ER:YAG laser irradiation. Dent Mater J. 2019;38(2):218–225. doi: 10.4012/dmj.2017-428
  47. Carvalho RF, Cardenas A, Carvalho CN, et al. Effect of the Photo-initiator System Contained in Universal Adhesives on Radicular Dentin Bonding. Oper Dent. 2020;45(5):547–555. doi: 10.2341/19-146-L
  48. Safronova EL, Umarov YY, Guseinova LKh, et al. Sravnitel’naya otsenka vremeni raboty s adgezivnymi sistemami 5-go i 7-go pokoleniya. In: Stomatologiya – nauka i praktika, perspektivy razvitiya. Materialy Yubileinoi nauchno-prakticheskoi konferentsii, posvyashchennoi 55-letiyu stomatologicheskogo fakul’teta VolgGMU. Volgograd; 2017. P:401–404. (In Russ).
  49. Sedoikin AG, Kisel’nikova LP, Drobot’ko LN. Sila stsepleniya sovremennykh adgezivnykh sistem 6-7 pokoleniya s emal’yu i dentinom vremennykh zubov in vitro. In: Materialy XXIV Mezhdunarodnogo yubileinogo simpoziuma “Innovatsionnye tekhnologii v stomatologii”, posvyashchennogo 60-letiyu stomatologicheskogo fakul’teta Omskogo gosudarstvennogo meditsinskogo universiteta. Omsk; 2017. P:425–428. (In Russ).
  50. Mitronin AV, Il’ina MI, Galieva DT, Mitronin YA. Estimation of the penetration depth of an adhesive system vth generation in dentinal tubules depending on the concentration of orthophosphoric acid in gel for total etching relating to adhesive system VII generation. Cathedra — Kafedra. Dental education. 2019;(70):18–21. (In Russ).

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The compound obtained as a result of adhesion of glycerophosphoric acid dimethacrylate with dental tissues

Download (40KB)
3. Fig. 2. Formation of an ionic bond with Ca2+ ions

Download (20KB)
4. Fig. 3. Mechanisms of polymerization reaction

Download (78KB)
5. Fig. 4. Chloro-substituted phosphates

Download (57KB)
6. Fig. 5. Active groups of adhesive systems of the third generation. а—hydroxyethylmethacrylate (HEMA); b — a compound obtained as a result of adhesion of HEMA with dental tissues

Download (80KB)
7. Fig. 6. Reaction of obtaining 4-META from hydroxyethylmethacrylate and trimellite anhydride

Download (103KB)
8. Fig. 7. Dipentaerythrolapentacrylate phosphoric acid ester (PENTA)

Download (68KB)
9. Fig. 8. Probable mechanism of connection of PENTA with hydroxyapatite of the tooth (R — hydrophobic fragments)

Download (81KB)
10. Fig. 9. The bond of hydroxyapatite with maleic acid

Download (44KB)

Copyright (c) 2022 Bordina G.E., Lopina N.P., Andreev A.A., Nekrasov I.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies