Expression of CD44, CD29 and osteocalcin differentiation factors in the alveolar bone during past fixation of a free gingival graft

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Aim: To study the localization of stem stromal cells on the surface of a free gingival graft.

Material and methods: We studied the immunolocalization of stem cell markers (CD29, CD44 and osteocalcin) the mucosa plate and bone tissue of the lower jaw of outbred miniature pigs with bone fixation of a free gingival graft.

Results: In the third month after the operation, a new bone tissue is formed in the contact area, characterized by formed bone plates, osteons, and a system of Havers and Volkman channels. When studying the immunolocalization of CD29, CD44, and osteocalcin, we detected a heterogeneous distribution. CD29and CD44-immunopositive cells prevail at the border of the newly formed bone and its own gingival plate, as well as in the cavity of the Havers canals. Osteocalcin-positive cells are localized mainly in the layer of common plates, on the surface of the bone plates of osteons surrounding the Havers channel and in its cavity, which are in close proximity to the graft.

Conclusion: Bone fixation of SDT remodels the alveolar bone, showing signs of a reparative process. The presence of expression of CD29 and CD44 in bone tissue indicates the activation of mesenchymal cambial cells, which differentiate into osteocalcin-containing osteoblasts. The inducing role of a free gingival graft in the formation of a new bone is determined by the ability of its cells to synthesize trophic factors stimulating the proliferation and differentiation of MSC and vascular growth. Thus, the model on miniature pigs is a useful tool for studying this process.

About the authors

S. S. Edranov

Pacific State Medical University

Email: nymatveeva@mail.ru
Russian Federation, Vladivostok

Natalya Yu. Matveeva

Pacific State Medical University

Author for correspondence.
Email: nymatveeva@mail.ru

Dr. Sci. Med., Head Department of Histology, Cytology and Embryology, Pacific State Medical University

Russian Federation, Vladivostok

S. G. Kalinichenko

Pacific State Medical University

Email: nymatveeva@mail.ru
Russian Federation, Vladivostok

References

  1. Edranov SS. Cellular and molecular aspects of posttraumatic regeneration of the mucosa of the paranasal sinuses. Tikhookeanskiy meditsinskiy zhurnal. 2016;(2):67–71. (in Russian)
  2. Souza AB, Tormena M, Matarazzo F, Araújo MG. The influence of peri-implant keratinized mucosa on brushing discomfort and peri-implant tissue health. Clin Oral Implants Res. 2016;27(6):650–5. doi: 10.1111/clr.13381.
  3. Hatzimanolakis P, Tsourounakis I, Kelekis-Cholakis A. Dental implant maintenance for the oral healthcare team. Compend Contin Educ Dent. 2019;40(7):424–9.
  4. Brito C, Tenenbaum HC, Wong BK, Schmitt C, Nogueira-Filho G. Is keratinized mucosa indispensable to maintain peri-implant health? A system-atic review of the literature. J. Biomed. Mater. Res. Part B Appl. Biomater. 2014;102(3):643–50. doi: 10.1002/jbm.b.33042.
  5. Ladwein C, Schmelzeisen R, Nelson K, Fluegge TV, Fretwurst T. Is the presence of keratinized mucosa associated with periimplant tissue health? A clinical cross-sectional analysis. Int J Implant Dent. 2015;1(1):11. doi: 10.1186/s40729–015-0009-z.
  6. Roccuzzo M, Grasso G, Dalmasso P. Keratinized mucosa around implants in partially edentulous posterior mandible: 10-year results of a prospec-tive comparative study. Clin Oral Impl Res. 2016;27(4):491–6. doi: 10.1111/clr.12563.
  7. Puisys A, Linkevicius T. The influence of mucosal tissue thickening on crestal bone stability around bone-level implants. A prospective controlled clinical trial. Clin Oral Impl Res. 2015;26(2):123–9. doi: 10.1111/clr.12301.
  8. Monje A, Galindo-Moreno P, Tözürm TF, Suárez-López del Amo F, Wang HL. Into the paradigm of local factors as contributors for periimplant disease: a short communication. J Oral Maxillofac Impl. 2016;31(2):288–92. doi: 10.11607/jomi.4265.
  9. Barboza EP, Stutz B, Mandarino D, Rodrigues DM, Ferreira VF. Evaluation of a dense polytetrafluoroethylene membrane to increase keratinized tissue: a randomized controlled clinical trial. Implant Dent. 2014;23(3):289–94. doi: 10.1097/ID.0000000000000060.
  10. Rojo L, Deb S. Polymer therapeutics in relation to dentistry. Front Oral Biol. 2015;17:13–22. doi: 10.1159/000381688.
  11. Cheon GB, Kang KL, Yoo MK, Yu JA, Lee DW. Alveolar ridge preservation using allografts and dense polytetrafluoroethylene membranes with open membrane technique in unhealthy extraction socket. J Oral Implantol. 2017;43(4):267–73. doi: 10.1563/aaid-joi-D-17–00012.
  12. Edranov SS, Kerzikov RA. Free gingival graft morphogenesis. Rossiyskiy stomatologicheskiy zhurnal. 2017;21(2):111–6. (in Russian)
  13. Sharpe PT. Dental mesenchymal stem cells. Development. 2016;143:2273–80. doi: 10.1242/dev.134189
  14. Aydin S, Şahin F. Stem cells derived from dental tissues. Adv. Exp. Med. Biol. 2019;1144:123–32. doi: 10.1007/5584–2018-333.
  15. Trubiani O, Orsini G, Caputi S, Piatelli A. Adult mesenchymal stem cells in dental research: a new approach for tissue engineering. Int J Immuno-pathol Pharmacol. 2006;19(3):451–60. doi: 10.1177/039463200601900301.
  16. Dave JR, Tomar GB. dental tissue-derived mesenchymal stem cells: applications in tissue engineering. Crit Rev Biomed Eng. 2018;46(5):429–68. doi: 10.1615/CritRevBiomedEng.2018027342.
  17. Wang X, Wang Y, Gou W, Lu Q, Peng J, Lu S. Role of mesenchymal stem cells in bone regeneration and fracture repair: a review. Int Orthop. 2013;37(12):2491–2498. doi: 10.1007/s00264–013-2059–2.
  18. Kapanadze GD. The use of miniature pigs in biomedical experiments. Biomeditsina. 2006;(2):40–51. (in Russian)
  19. Wang S, Liu Y, Fang D, Shi S. The miniature pig: a useful large animal model for dental and orofacial research. Oral Dis. 2007;13(6):530–7. doi: 10.1111/j.1601–0825.2006.01337.x.
  20. Borges T, Fernandes D, Almeida B, Pereira M, Martins D. et al. Correlation between alveolar bone morphology and volumetric dimensional changes in immediate maxillary implant placement: a 1-year prospective cohort study. J Periodontol. 2020. doi: 10.1002/JPER.19–0606.
  21. Fournier BP, Ferre FC, Couty L, Lataillade JJ, Gourven M, Naveau A, Coulomb B, Lafont A, Gogly B. Multipotent progenitor cells in gingival con-nective tissue. Tissue Eng Part A. 2010;16(9):2891–9. doi: 10.1089/ten.TEA.2009.0796.
  22. Kalinichenko SG, Matveeva NYu, Kostiv RE, Puz' AV. Vascular endothelial growth factor and transforming growth factor-b2 in bone tissue of rats when placed after fracture of titanium implants with bioactive bioresorbable coatings. Byulleten' eksperimental'noy biologii i meditsiny. 2016;162(11):626–31. (in Russian)
  23. Kostiv RE, Kalinichenko SG, Matveeva NYu. Trophic factors of bone growth, their morphogenetic characterization and clinical significance. Tikhookeanskiy meditsinskiy zhurnal. 2017;(1):10–6. (in Russian)
  24. Matveeva NYu, Kostiv RE, Kalinichenko SG, Puz AV, Plekhova NG. Dynamics of regeneration of a broken hipbone of rats with the use of the tita-nium implant with the active surface cover. Mezhdunarodnyy zhurnal prikladnykh i fundamental'nykh issledovaniy. 2015;(10–5):849–53. (in Russian)
  25. Plekhova NG, Lyapun IN, Kalinichenko SG, Matveeva NYu, Kostiv RE, Gnedenkov SV. et al. The effects of bio inertness and resorbable metal im-plants on the expression of membrane receptors dendritic cells. Sovremennye problemy nauki i obrazovaniya. 2015;(5):181. (in Russian)
  26. Grawish ME. Gingival-derived mesenchymal stem cells: an endless resource for regenerative dentistry. World J Stem Cells. 2018;10(9):116–18. doi: 10.4252/wjsc.v10.i9.116.
  27. Franchi M, Orsini E, Trirè A, Quaranta, M, Martini D, Piccari GG, et al. Osteogenesis and morphology of the peri-implant bone facing dental im-plants. Scientific World Journal. 2004;4:1083–95. doi: 10.1100/tsw.2004.211.
  28. Kalinichenko SG, Matveeva NYu, Kostiv RYe, Edranov SS. The topography and proliferative activity of cells immunoreactive to various growth factors in rat femoral bone tissues after experimental fracture and implantation of titanium implants with bioactive biodegradable coatings. Biomed Mater Eng. 2019;30(1):85–95. doi: 10.3233/BME-181035.
  29. Kantarci A, Hasturk H, Van Dyke TE. Animal models for periodontal regeneration and peri-implant responses. Periodontol 2000. 2015;68(1):66–82. doi: 10.1111/prd.12052.
  30. Iorio-Siciliano V, Blasi A, Sammartino G, Salvi GE, Sculean A. Soft tissue stability related to mucosal recession at dental implants: a systematic review. Quintessence Int. 2020;51(1):28–36. doi: 10.3290/j.qi.a43048.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Newly formed compact bone in the area of contact with SDT of the lower jaw of a miniature pig. The third month of the postoperative period. The arrows point to the new bone. Large basophilic cells form cords along the bone plates (asterisk). Staining with hematoxylin and eosin.

Download (432KB)
3. Fig. 2. Localization of CD29, CD44 and osteocalcin in the bone tissue of the lower jaw of an outbred miniature pig in the area of SDT contact during extra-bone fixation of a free gingival graft. The third month of the postoperative period.

Download (1MB)

Copyright (c) 2020 Eco-Vector


 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies