Human organism in the conditions of homeostatic dynamics of meteoroligical parameters of the Russian North


Cite item

Full Text

Abstract

The problem of homeostasis and especially homeostatic behavior of different parameters of the human body functional systems in the Russian North (human's cardiovascular system (CVS) is considered in the work) was reviewed from new perspective (new theory of chaos and self-organization). After proving of N. A. Bernstein's hypothesis about "repetition without repetition" in biomechanics as a statistical instability of obtained samples (in one subject with universal homeostasis) a problem explaining mechanisms of such instability appeared. One of the mechanisms of such stochastic chaos for RR intervals and over parameters of cardiovascular system may be connected with chaotic dynamics of parameters of the human environment. The purpose of the study is to assess the influence of external chaos (parameters of the human environment) on internal regulatory functions. Using the methods of paired comparison of samples of meteorological parameters and calculation of quasi-attractors' parameters, we obtained information on the state of meteorological parameters of the human environment, which demonstrate stochastic instability in succession of samples obtained (identical months and the same seasons of the year). The results of the study showed that the average values of the areas of quasi-attractors of two phase coordinates (T, P) differ very significantly. It is suggested that such chaotic dynamics can induce chaos of the CVS parameters. The paper proves homeostasis in the behavior of meteorological parameters, which can significantly affect the systems of regulation of the main functions of the human body. The statistical instability of the parameters of the human environment is shown, which is very similar to the dynamics of tremor and teping in the Eskov-Zinchenko effect. Conclusions. The statistical instability of meteorological parameters is similar to the homeostasis of living systems. At the same time, the mechanisms of regulation of the CVS and meteorological parameters of the human environment are, of course, different. A common feature is the special chaos of the xi parameters, which is manifested in the statistical instability in a row of the resulting samples. Such a statistical instability is called the Eskov - Zinchenko effect, and has no analogue in such systems.

About the authors

O. E. Filatova

Surgut State University Khanty-Mansiysk Autonomous Area, Institute of Natural and Technical Sciences

Институт естественных и технических наук Surgut, Russia

Yu. V. Bashkatova

Surgut State University Khanty-Mansiysk Autonomous Area, Institute of Natural and Technical Sciences

Email: yuliya-bashkatova@yandex.ru
Институт естественных и технических наук; кандидат биологических наук, старший преподаватель кафедры экологии и биофизики Surgut, Russia

D. Yu. Filatova

Surgut State University Khanty-Mansiysk Autonomous Area, Institute of Natural and Technical Sciences

Институт естественных и технических наук Surgut, Russia

L. K. Ilyashenko

Tyumen Industrial University, Surgut Branch

Surgut, Russia

References

  1. Гараева Г. Р., Еськов В. М., Еськов В. В., Гудков А. Б., Филатова О. Е., Химикова О. И. Хаотическая динамика кардиоинтервалов трёх возрастных групп представителей коренного населения Югры // Экология человека. 2015. № 9. С. 50-55.
  2. Еськов В. В., Филатова О. Е., Гавриленко Т. В., Химикова О. И. Прогнозирование долгожительства у российской народности ханты по хаотической динамике параметров сердечно-сосудистой системы // Экология человека. 2014. № 11. С. 3-8.
  3. Еськов В. В. Возможности термодинамического подхода в электромиографии // Вестник кибернетики. 2017. № 4 (28). С. 109-115.
  4. Еськов В. В. Эволюция систем третьего типа в фазовом пространстве состояний // Вестник кибернетики. 2017. № 3 (27). С. 53-58.
  5. Betelin V. B, Eskov V. M., Galkin V. A., Gavrilenko T. V. Stochastic Volatility in the Dynamics of Complex Homeostatic Systems // Doklady Mathematics. 2017. Vol. 95. N 2. P. 1-3.
  6. Eskov V. M. Hierarchical respiratory neuron networks // Modelling, Measurement and Control C. 1995. Vol. 48 (1-2). P. 47-63.
  7. Eskov V. M., Filatova O. E. Respiratory rhythm generation in rats: The importance of inhibition // Neurophysiology. 1995. Vol. 25 (6). P. 348-353.
  8. Eskov V. M., Filatova O. E., Ivashenko V. P. Computer identification of compartmental neuron circuits // Measurement Techniques. 1994. Vol. 37 (8). P. 967-971.
  9. Eskov V. M., Kulaev S. V., Popov Yu. M., Filatova O. E. Computer technologies in stability measurements on stationary states in dynamic biological systems // Measurement Techniques. 2006. Vol. 49 (1). P. 59-65.
  10. Eskov V. M., Eskov V. V., Braginskii M. Ya., Pashnin A. S. Determination of the degree of synergism of the human cardiorespiratory system under conditions of physical effort // Measurement Techniques. 2011. Vol. 54 (7). P. 832-837.
  11. Eskov V. M., Gavrilenko T. V., Kozlova V. V., Filatov M. A. Measurement of the dynamic parameters of microchaos in the behavior of living biosystems // Measurement Techniques. 2012. Vol. 22 (9). P. 1096-1100
  12. Eskov V. M. Evolution of the emergent properties of three types of societies: The basic law of human development // Emergence: Complexity and Organization. 2014. Vol. 16 (2). P. 107-115.
  13. Eskov V. M., Eskov V. V., Gavrilenko T. V., Zimin M. I. Uncertainty in the quantum mechanics and biophysics of complex systems // Moscow University Physics Bulletin. 2014. Vol. 69 (5). P. 406-411.
  14. Eskov V. M., Eskov V. V., Gavrilenko T. V., Vochmina J. V. Biosystem kinematics as evolution: Stationary modes and movement speed of complex systems: Complexity // Moscow University Physics Bulletin. 2015. Vol. 70 (2). P. 140-152.
  15. Eskov V. M., Eskov V. V., Vochmina J. V., Gavrilenko T. V. The evolution of the chaotic dynamics of collective modes as a method for the behavioral description of living systems // Moscow University Physics Bulletin. 2016. Vol. 71 (2). P. 143-154.
  16. Eskov V. M., Eskov V. V., Vochmina Y. V., Gorbunov D. V., Ilyashenko L. K. Shannon entropy in the research on stationary regimes and the evolution of complexity // Moscow University Physics Bulletin. 2017. Vol. 72, N 3. P. 309-317.
  17. Eskov V. M., Eskov V. V., Gavrilenko T. V., Vochmina Yu. V. Formalization of the Effect of “Repetition without Repetition” Discovered by N. A. Bernshtein // Biofizika. 2017. Vol. 62, N 1. P. 168-176.
  18. Eskov V. V., Gavrilenko T. V., Eskov V. M., Vochmina Yu. V. Phenomenon of statistical instability of the third type systems - complexity // Technical Physics. 2017. Vol. 62, N 11. P. 1611 - 1616.
  19. Zilov V. G., Eskov V. M., Khadartsev A. A., Eskov V. V. Experimental Verification of the Bernstein Effect “Repetition without Repetition” // Bulletin of experimental biology and medicine. 2017. Vol. 163, N 1. P. 1-5.
  20. Zilov V. G., Khadartsev A. A., Eskov V. V. Eskov V. M. Experimental Study of Statistical Stability of Cardiointerval Samples // Bulletin of experimental biology and medicine. 2017. Vol. 164, N 2. P. 115-117.

Copyright (c) 2019 Filatova O.E., Bashkatova Y.V., Filatova D.Y., Ilyashenko L.K.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies