Renin-angiotensin system gene polymorphism and aging

Cover Page

Cite item

Full Text

Abstract

A personalized healthy aging program, aimed at preservation of functional capacities in old ages, should consider genetic (hereditary) factors that determine the structure and functions of body organs and systems, and their age-related changes. Individual genetic characteristics of a person can influence the aging process. For this reason, recent research focuses on identifying genetic mechanisms of aging and longevity associated with multifactorial diseases. Renin-angiotensin system (RAS) contributes to the development of pathological conditions leading to cardiovascular diseases, cognitive changes, disorders of auditory and visual analyzers, and may determine the preservation of functional capacities in older adults. We present a literature review of the role of the RAS gene polymorphisms in the aging processes. The results of the synthesis of Russian and international literature indicated the contribution of polymorphic variants of the angiotensinogen (AGT), angiotensin-converting enzyme (ACE), and angiotensin II receptor type 1 (AGTR1) genes to the development of pathological conditions and the associated decreases in functional capacities of an elderly person. Testing for these polymorphisms can be of a practical importance for personified health assessment and development of timely preventive interventions aimed at improving life expectancy and quality of life among older adults.

About the authors

Natalia A. Bebyakova

Northern State Medical University

Email: nbebyakova@mail.ru
ORCID iD: 0000-0002-9346-1898
SPIN-code: 6326-5523

Dr. Sci. (Biol.), professor

Russian Federation, Arkhangelsk

Sergey N. Levitsky

Northern State Medical University

Author for correspondence.
Email: sergeylevitski@yandex.ru
ORCID iD: 0000-0003-2588-620X
SPIN-code: 9846-7867

Cand. Sci. (Biol.), associate professor

Russian Federation, Arkhangelsk

Irina A. Shabalina

Northern State Medical University

Email: ira_sha@mail.ru
ORCID iD: 0000-0001-9425-3882
SPIN-code: 8015-5230

Cand. Sci. (Biol.), associate professor

Russian Federation, Arkhangelsk

Tatyana M. Komandresova

Pskov State University

Email: tatmyh005@mail.ru
ORCID iD: 0000-0001-5317-7617
SPIN-code: 6792-8673

Cand. Sci. (Biol.), associate professor

Russian Federation, Pskov

Alexander V. Kudryavtsev

Northern State Medical University

Email: ispha09@gmail.com
ORCID iD: 0000-0001-8902-8947
SPIN-code: 9296-2930

PhD

Russian Federation, Arkhangelsk

References

  1. Glotov OS, Baranov VS. Genetic polymorphisms and aging. Uspekhi gerontologii. 2007;20(2):35–55 (In Russ).
  2. Akopyan AA, Strazhesko ID, Tkacheva ON, et al. Review of polymorphisms, associated with cardiovascular diseases. Russian Journal of Geriatric Medicine. 2020;(4):333–338. doi: 10.37586/2686-8636-4-2020-333-338
  3. Vasan RS, Demissie S, Kimura M, et al. Association of leukocyte telomere length with circulating biomarkers of the renin-angiotensin-aldosterone system: the Framingham Heart Study. Circulation. 2008;117(9):1138–1144. doi: 10.1161/CIRCULATIONAHA.107.731794
  4. Wei Y, Whaley-Connell AT, Habibi J, et al. Mineralocorticoid receptor antagonism attenuates vascular apoptosis and injury via rescuing protein kinase B activation. Hypertension. 2009; 53(2):158–165. doi: 10.1161/HYPERTENSIONAHA.108.121954
  5. Min LJ, Mogi M, Iwai M, Horiuchi M. Signaling mechanisms of angiotensin II in regulating vascular senescence. Ageing Research Reviews. 2009;8(2):113–121. doi: 10.1016/j.arr.2008.12.002
  6. McMaster WG, Kirabo A, Madhur MS, Harrison DG. Inflammation, immunity, and hypertensive end-organ damage. Circulation Research. 2015;116(6):1022–1033. doi: 10.1161/CIRCRESAHA.116.303697
  7. Neves MF, Cunha AR, Cunha MR, et al. The Role of Renin-Angiotensin-Aldosterone System and Its New Components in Arterial Stiffness and Vascular Aging. High Blood Pressure & Cardiovascular Prevention. 2018;25(2):137–145. doi: 10.1007/s40292-018-0252-5
  8. Hristova M, Stanilova S, Miteva L. Serum concentration of renin-angiotensin system components in association with ACE I/D polymorphism among hypertensive subjects in response to ACE inhibitor therapy. Clinical and Experimental Hypertension. 2019;41(7):662–669. doi: 10.1080/10641963.2018.1529782
  9. Pavlova OS, Korobko IY, Liventseva MM, et al. Pathogenesis of cell aging: gene polymorphism and activity of renin-angiotensin-aldosterone system. Neotlozhnaya kardiologiya i kardiovaskulyarnye riski (Emergency cardiology and cardiovascular risks). 2020;4(1):898–903 (In Russ).
  10. Zgheib NK, Sleiman F, Nasreddine L, et al. Short Telomere Length is Associated with Aging, Central Obesity, Poor Sleep and Hypertension in Lebanese Individuals. Aging and Disease. 2018; 9(1):77–89. doi: 10.14336/AD.2017.0310
  11. Abbas M, Jesel L, Auger C, et al. Endothelial Microparticles From Acute Coronary Syndrome Patients Induce Premature Coronary Artery Endothelial Cell Aging and Thrombogenicity: Role of the Ang II/AT1 Receptor/NADPH Oxidase-Mediated Activation of MAPKs and PI3-Kinase Pathways. Circulation. 2017;135(3):280–296. doi: 10.1161/CIRCULATIONAHA.116.017513
  12. Pykhtina VS, Strazhesko ID, Agaltsov MV, Tkacheva ON. Renin-angiotensin-aldosterone system and replicative cellular aging: their interaction during vascular aging. Rational Pharmacotherapy in Cardiology. 2014;10(3):312–316.
  13. van Kats JP, Danser AH, van Meegen JR, et al. Angiotensin production by the heart: a quantitative study in pigs with the use of radiolabeled angiotensin infusions. Circulation. 1998;98(1):73–81. doi: 10.1161/01.cir.98.1.73
  14. Kobori H, Prieto-Carrasquero MC, Ozawa Y, Navar LG. AT1 receptor mediated augmentation of intrarenal angiotensinogen in angiotensin II-dependent hypertension. Hypertension. 2004;43(5):1126–1132. doi: 10.1161/01.HYP.0000122875.91100.28
  15. Moulik S, Speth RC, Turner BB, Rowe BP. Angiotensin II receptor subtype distribution in the rabbit brain. Experimental Brain Research. 2002;142(2):275–283. doi: 10.1007/s00221-001-0940-5
  16. Ryabina MV, Ohotsimskaya TD. Modern view on the role of renin-angiotensin system in pathogenesis of diabetic retinopathy. Russian Journal of Clinical Ophthalmology. 2012;13(2):52–59.
  17. Shestakova MV. The role of tissue renin-angiotensin-aldosterone system in development of metabolic syndrome, diabetes mellitus and its vascular complications. Diabetes mellitus. 2010;13(3):14–19. doi: 10.14341/2072-0351-5481
  18. Deinikova TI, Yakunina EN, Kalashnikova EG, Oleinikova IA. Nekotorye aspekty sovremennoj koncepcii zdorovogo stareniya. Mnogoprofil’nyj stacionar. 2019;6(1):17–22. (In Russ).
  19. Cheung KH, Osier MV, Kidd JR, et al. ALFRED: an allele frequency database for diverse populations and DNA polymorphisms. Nucleic Acids Research. 2000;28(1):361–363. doi: 10.1093/nar/28.1.361
  20. Kostyuchenko GI, Vyun OG, Kostyuchenko LA. The analysis of the efficiency of hypotensive therapy in the group of young patients on the background of genetic polymorphism associated with arterial hypertension. Health and Education. 2018;20(2):46–49. doi: 10.26787/nydha-2226-7425-2018-20-2-46-49
  21. Baranov VS, Glotov OS, Baranova EV. Genomics of aging and predictive medicine. Uspekhi gerontologii. 2010;23(3):329–338 (In Russ).
  22. Elkina AYu, Akimova NS, Shvarts YuG. Polymorphic variants of angiotensin-converting enzyme, angiotensinogen, angiotensin receptor type I gene as genetic predictors of arterial hypertension development. Russian Journal of Cardiology. 2021;26(1S):4143. doi: 10.15829/1560-4071-2021-4143
  23. Reshetnikov YA, Akulova LY, Batlutskaya IV. Molecular genetic mechanisms of the functioning of the cardiovascular system and role of the renin-angiotensin system in providing cardiovascular reactions in the body. Belgorod State University scientific bulletin. Medicine, pharmacy. 2013;(11):179–184.
  24. Park HK, Kim MC, Kim SM, Jo DJ. Assessment of two missense polymorphisms (rs4762 and rs699) of the angiotensinogen gene and stroke. Experimental and Therapeutic Medicine. 2013;5(1):343–349. doi: 10.3892/etm.2012.790
  25. Yao R, Du YY, Zhang YZ, et al. Association between G-217A polymorphism in the AGT gene and essential hypertension: a meta-analysis. Genetics and Molecular Research. 2015;14(2):5527–5534. doi: 10.4238/2015.May.25.4
  26. Muzhenya DV. Pathophysiological role and prognostic significance of M235T polymorphism of the angiotensinogen gene (AGT) in diseases of the heart of the continuum (HC). Bulletin of the Adyghe State University. Series Natural-mathematical and technical sciences. 2012;(1):66–79.
  27. Larsson SC, Mason AM, Bäck M, et al. Genetic predisposition to smoking in relation to 14 cardiovascular diseases. European Heart Journal. 2020;41(35):3304–3310. doi: 10.1093/eurheartj/ehaa193
  28. Bebyakova NA, Levitsky SN, Pervukhina OA, Shabalin IA. The role of polymorphism A1166C of angiotensin II receptor type 1 gene (AGT2R1) in formation of cardiovascular risk factors in European North young men and women. Journal of Medical and Biological Research. 2019;7(4):371–380. doi: 10.17238/issn2542-1298.2019.7.4.371
  29. Jazwiec P, Gac P, Chaszczewska-Markowska M, et al. Genetically determined enlargement of carotid body evaluated using computed angiotomography. Respiratory Physiology & Neurobiology. 2018;254:10–15. doi: 10.1016/j.resp.2018.04.001
  30. Sethupathy P, Borel C, Gagnebin M, et al. Human microRNA-155 on chromosome 21 differentially interacts with its polymorphic target in the AGTR1 3’ untranslated region: a mechanism for functional single-nucleotide polymorphisms related to phenotypes. American Journal of Human Genetics. 2007;81(2):405–413. doi: 10.1086/519979
  31. Inozemtseva AA, Kashtalap VV, Barbarash OL, et al. Cardiovascular risk factors, lipid metabolism and blood pressure regulation gene polymorphism in patients with ST-segment elevation myocardial infarction. Siberian Journal of Clinical and Experimental Medicine. 2015;30(3):19–24. doi: 10.29001/2073-8552-2015-30-3-19-24
  32. Cosenso-Martin LN, Vaz-de-Melo RO, Pereira LR, et al. Angiotensin-converting enzyme insertion/deletion polymorphism, 24-h blood pressure profile and left ventricular hypertrophy in hypertensive individuals: a cross-sectional study. European Journal of Medical Research. 2015;20(1):74. doi: 10.1186/s40001-015-0166-9
  33. Pavlyushchik OO, Afonin VY, Sarokina VN, et al. Association of the ace I/D gene polymorphism with DNA damage in hypertensive men. Cytology and Genetics. 2016;50:304–311. doi: 10.3103/S0095452716050091
  34. Higueras-Fresnillo S, Cabanas-Sánchez V, García-Esquinas E, et al. Physical activity attenuates the impact of poor physical, mental, and social health on total and cardiovascular mortality in older adults: a population-based prospective cohort study. Quality of Life Research. 2018;27(12):3293–3302. doi: 10.1007/s11136-018-1974-5
  35. Pearson AC. The evolution of basal septal hypertrophy: From benign and age-related normal variant to potentially obstructive and symptomatic cardiomyopathy. Echocardiography. 2017;34(7):1062–1072. doi: 10.1111/echo.13588
  36. Martynovich TV, Akimova NS, Fedotov EA, et al. Analysis of renin-angiotensin-aldosterone system gene polymorphism in patients with cardiovascular diseases. Sovremennye problemy nauki i obrazovaniya. 2015;3. Available from: https://science-education.ru/ru/article/view?id=17392 (In Russ).
  37. Kim HK, Lee H, Kwon JT, Kim HJ. A polymorphism in AGT and AGTR1 gene is associated with lead-related high blood pressure. Journal of the Renin-Angiotensin-Aldosterone System. 2015;16(4):712–719. doi: 10.1177/1470320313516174
  38. Zhao H, Zhao R, Hu S, Rong J. Gene polymorphism associated with angiotensinogen (M235T), endothelial lipase (584C/T) and susceptibility to coronary artery disease: a meta-analysis. Bioscience Reports. 2020;40(7):BSR20201414. doi: 10.1042/BSR20201414
  39. Wang WZ. Association between T174M polymorphism in the angiotensinogen gene and risk of coronary artery disease: a meta-analysis. Journal of Geriatric Cardiology. 2013;10(1):59–65. doi: 10.3969/j.issn.1671-5411.2013.01.010
  40. Cai G, Zhang B, Ma C, et al. Associations of Rs3744841 and Rs3744843 Polymorphisms in Endothelial Lipase Gene with Risk of Coronary Artery Disease and Lipid Levels in a Chinese Population. PLoS One. 2016;11(9):e0162727. doi: 10.1371/journal.pone.0162727
  41. Pavlova OS, Ogurtsova SE, Denisevich TL, et al. Prediction of risk of left ventricular hypertrophy in arterial hypertension with regard to renin-angiotensin oldosterone system gene polymorphism. Kardiologiâ v Belarusi. 2021;13(3):354–368 (In Russ). doi: 10.34883/PI.2021.13.3.002
  42. Li YY, Wang H, Wang H, Zhang YY. Myocardial Infarction and AGT p.Thr174Met Polymorphism: A Meta-Analysis of 7657 Subjects. Cardiovascular Therapeutics. 2021:6667934. doi: 10.1155/2021/6667934
  43. El-Garawani IM, Shaheen EM, El-Seedi HR, et al. Angiotensinogen Gene Missense Polymorphisms (rs699 and rs4762): The Association of End-Stage Renal Failure Risk with Type 2 Diabetes and Hypertension in Egyptians. Genes (Basel). 2021;12(3):339. doi: 10.3390/genes12030339
  44. Akbarzadeh M, Riahi P, Kolifarhood G, et al. The AGT epistasis pattern proposed a novel role for ZBED9 in regulating blood pressure: Tehran Cardiometabolic genetic study (TCGS). Gene. 2022;831:146560. doi: 10.1016/j.gene.2022.146560
  45. Dong MZ, Lin ZH, Liu SS, et al. AGT rs5051 gene polymorphism increases the risk of coronary heart disease in patients with non-alcoholic fatty liver disease in the Han Chinese population. Zhonghua ganzangbing zazhi. 2021;29(11):1095–1100. doi: 10.3760/cma.j.cn501113-20210106-00008
  46. Jia EZ, Xu ZX, Guo CY, et al. Renin-angiotensin-aldosterone system gene polymorphisms and coronary artery disease: detection of gene-gene and gene-environment interactions. Cellular Physiology and Biochemistry. 2012;29(3–4):443–452. doi: 10.1159/000338498
  47. Bahramali E, Firouzabadi N, Jonaidi-Jafari N, Shafiei M. Renin-angiotensin system genetic polymorphisms: lack of association with CRP levels in patients with coronary artery disease. Journal of the Renin-Angiotensin-Aldosterone System. 2014;15(4):559–565. doi: 10.1177/1470320312474051
  48. Krasnova OA, Sitnikova MY. Polymorphic variants of ACE, AGT and ADRB2 genes and their combinations in men with systolic coronary artery disease: distribution features and influence on prognosis. Bûlletenʹ Federalʹnogo centra serdca, krovi i èndokrinologii im. V.A. Almazova. 2013;(4):70–76. (In Russ).
  49. Glotov AS, Glotov OS, Moskalenko MV, et al. Analysis of genes polymorphisms of renin-angiotensine systems in population, athletes and elderly people. Ecological genetics. 2004;2(4):40–43. doi: 10.17816/ecogen2440-43
  50. Gong H, Mu L, Zhang T, et al. Association of polymorphisms of CYP11B2 gene -344C/T and ACE gene I/D with antihypertensive response to angiotensin receptor blockers in Chinese with hypertension. Journal of Genetics. 2019;98:1. doi: 10.1007/s12041-018-1053-2
  51. Pinheiro DS, Santos RS, Jardim PCBV, et al. The combination of ACE I/D and ACE2 G8790A polymorphisms revels susceptibility to hypertension: A genetic association study in Brazilian patients. PLoS One. 2019;14(8):e0221248. doi: 10.1371/journal.pone.0221248
  52. Heidari MM, Hadadzadeh M, Fallahzadeh H. Development of One-Step Tetra-primer ARMS-PCR for Simultaneous Detection of the Angiotensin Converting Enzyme (ACE) I/D and rs4343 Gene Polymorphisms and the Correlation with CAD Patients. Avicenna Journal of Medical Biotechnology. 2019;11(1):118–123.
  53. Volkova SYu, Tomashevich KA, Soloboeva MYu, Panteeva EV. Analiz farmageneticheskih aspektov geneticheskih polimorfizmov RAAS u bol’nyh hronicheskoj serdechnoj nedostatochnost’yu. Eurasian Heart Journal. 2017;(3):100–101. (In Russ).
  54. Bai Y, Wang L, Hu S, Wei Y. Association of angiotensin-converting enzyme I/D polymorphism with heart failure: a meta-analysis. Molecular and Cellular Biochemistry. 2012;361(1–2):297–304. doi: 10.1007/s11010-011-1115-8
  55. Kolesnikova LI, Dolgikh VV, Belyaeva EV, et al. The role of A1166C polymorphism of AGTR1 gene in realization of arterial hypertension in children with glomerulonephritis. Bûlletenʹ VSNC SO RAMN. 2011;3(79 Pt 2):21–23. (In Russ).
  56. Melnikova LV, Osipova EV, Levashova OA. Polymorphism A1166C of AGTR1 Gene and the State of Intrarenal Blood Flow in Patients with Essential Arterial Hypertension 1–2 Degrees. Kardiologiia. 2019;59(3):5–10. (In Russ). doi: 10.18087/cardio.2019.3.10233
  57. Sousa AC, Reis RP, Pereira A, et al. Genetic Polymorphisms Associated with the Onset of Arterial Hypertension in a Portuguese Population. Acta Medica Portuguesa. 2018;31(10):542–550. doi: 10.20344/amp.9184
  58. Qian X, Guo D, Zhou H, et al. Interactions Between PPARG and AGTR1 Gene Polymorphisms on the Risk of Hypertension in Chinese Han Population. Genetic Testing and Molecular Biomarkers. 2018;22(2):90–97. doi: 10.1089/gtmb.2017.0141
  59. Dorofeeva NP, Kastanayan AA, Shlyk SV, et al. Polymorphism of renin-angiotensin system genes in patients with arterial hypertension and ischemic heart disease complicated by chronic heart failure. Arterial’naya gipertenziya. 2005;11(4):235–238 (In Russ). doi: 10.18705/1607-419X-2005-11-4-235-238
  60. Mulerova TA, Ponasenko AV, Tsepokina AV, Ogarkov MY. Polymorphism A1166C of angiotensinogen receptor type 1 gene (AGTR1) among indigenous and non-indigenous residents of Mountain Shoria. Sovremennye problemy nauki i obrazovaniya. 2017;3. Available from: https://science-education.ru/ru/article/view?id=26436
  61. Zhu M, Yang M, Lin J, et al. Association of seven renin angiotensin system gene polymorphisms with restenosis in patients following coronary stenting. Journal of the Renin-Angiotensin-Aldosterone System. 2017;18(1):1470320316688774. doi: 10.1177/1470320316688774
  62. Kivipelto M, Helkala EL, Laakso MP, et al. Midlife vascular risk factors and Alzheimer’s disease in later life: longitudinal, population based study. BMJ. 2001;322(7300):1447–1451. doi: 10.1136/bmj.322.7300.1447
  63. Shlyakhto YV, Zueva IB. Effect of therapy with angiotensin II receptor blockers on the development of cognitive disorders in patients with arterial hypertension: results of the OSCAR study. Arterial’naya gipertenziya. 2010;16(2):219–222 (In Russ). doi: 10.18705/1607-419X-2010--2-
  64. Jackson L, Eldahshan W, Fagan SC, Ergul A. Within the Brain: The Renin Angiotensin System. International Journal of Molecular Sciences. 2018;19(3):876. doi: 10.3390/ijms19030876
  65. Elias MF, Wolf PA, D’Agostino RB, et al. Untreated blood pressure level is inversely related to cognitive functioning: the Framingham study. American Journal of Epidemiology. 1993;138(6):353–364. doi: 10.1093/oxfordjournals.aje.a116868
  66. Goldstein FC, Hajjar IM, Dunn CB, et al. The relationship between cognitive functioning and the JNC-8 guidelines for hypertension in older adults. The Journals of Gerontology. Series A. Biological Sciences and Medical Sciences. 2017;72(1):121–126. doi: 10.1093/gerona/glw181
  67. Gottesman RF, Schneider AL, Albert M, et al. Midlife hypertension and 20-year cognitive change: the atherosclerosis risk in communities neurocognitive study. JAMA Neurology. 2014;71(10):1218–1227. doi: 10.1001/jamaneurol.2014.1646
  68. Pizova NV, Pizov NA, Pizov AV. Complex therapy of cognitive disorders in cerebrovascular diseases. Nervnye bolezni. 2022;1:22–30. (In Russ). doi: 10.24412/2226-0757-2022-12408
  69. Liu ME, Tsai SJ, Lu T, et al. No association of angiotensin I converting enzyme I/D polymorphism with domain-specific cognitive function in aged men without dementia. NeuroMolecular Medicine. 2011;13(3):212–216. doi: 10.1007/s12017-011-8153-y
  70. Zueva IB, Ulitina AS, Gorab DN, et al. The role of allelic variants of angiotensin-converting enzyme ACE and serotonin transporter SLC6A4 in cognitive deficit in persons with metabolic syndrome. Arterial’naya gipertenziya. 2012;18(6):531–539 (In Russ). doi: 10.18705/1607-419X-2012-18-6-531-539
  71. Zhang Z, Deng L, Bai F, et al. ACE I/D polymorphism affects cognitive function and gray-matter volume in amnestic mild cognitive impairment. Behavioural Brain Research. 2011;218(1):114–120. doi: 10.1016/j.bbr.2010.11.032
  72. Bai F, Zhang Z, Watson DR, et al. Abnormal functional connectivity of hippocampus during episodic memory retrieval processing network in amnestic mild cognitive impairment. Biological Psychiatry. 2009;65(11):951–958. doi: 10.1016/j.biopsych.2008.10.017
  73. Amouyel P, Richard F, Cottel D, et al. The deletion allele of the angiotensin I converting enzyme gene as a genetic susceptibility factor for cognitive impairment. Neuroscience Letters. 1996;217(2–3):203–205.
  74. Schuch JB, Constantin PC, da Silva VK, et al. ACE polymorphism and use of ACE inhibitors: effects on memory performance. Age. 2014;36(3):9646. doi: 10.1007/s11357-014-9646-z
  75. Lehmann DJ, Cortina-Borja M, Warden DR, et al. Large meta-analysis establishes the ACE insertion-deletion polymorphism as a marker of Alzheimer’s disease. American Journal of Epidemiology. 2005;162(4):305–317. doi: 10.1093/aje/kwi202
  76. Chou PS, Wu MN, Chou MC, et al. Angiotensin-converting enzyme insertion/deletion polymorphism and the longitudinal progression of Alzheimer’s disease. Geriatrics & Gerontology International. 2017;17(10):1544–1550. doi: 10.1111/ggi.12929
  77. Bour AM, Rasquin SM, Baars L, et al. The effect of the APOE-epsilon4 allele and ACE-I/D polymorphism on cognition during a two-year follow-up in first-ever stroke patients. Dementia and Geriatric Cognitive Disorders. 2010;29(6):534–542. doi: 10.1159/000314678
  78. Zannas AS, McQuoid DR, Payne ME, et al. Association of gene variants of the renin-angiotensin system with accelerated hippocampal volume loss and cognitive decline in old age. American Journal of Psychiatry. 2014;171(11):1214–1221. doi: 10.1176/appi.ajp.2014.13111543
  79. Salminen LE, Schofield PR, Pierce KD, et al. Impact of the AGTR1 A1166C polymorphism on subcortical hyperintensities and cognition in healthy older adults. Age. 2014;36(4):9664. doi: 10.1007/s11357-014-9664-x
  80. Saab YB, Gard PR, Yeoman MS, et al. Renin-angiotensin-system gene polymorphisms and depression. Progress in Neuro-Psychopharmacology & Biological Psychiatry. 2007;31(5):1113–1118. doi: 10.1016/j.pnpbp.2007.04.002
  81. Taylor WD, Benjamin S, McQuoid DR, et al. AGTR1 gene variation: association with depression and frontotemporal morphology. Psychiatry Research. 2012;202(2):104–109. doi: 10.1016/j.pscychresns.2012.03.007
  82. Herrmann LL, Le Masurier M, Ebmeier KP. White matter hyperintensities in late life depression: a systematic review. Journal of Neurology, Neurosurgery, and Psychiatry. 2008;79(6):619–624. doi: 10.1136/jnnp.2007.124651
  83. Salminen LE, Schofield PR, Pierce KD, et al. Neuromarkers of the common angiotensinogen polymorphism in healthy older adults: A comprehensive assessment of white matter integrity and cognition. Behavioural Brain Research. 2016;296:85–93. doi: 10.1016/j.bbr.2015.08.028
  84. Labandeira-Garcia JL, Rodríguez-Perez AI, Garrido-Gil P, et al. Brain Renin-Angiotensin System and Microglial Polarization: Implications for Aging and Neurodegeneration. Frontiers in Aging Neuroscience. 2017;9:129. doi: 10.3389/fnagi.2017.00129
  85. Rigat B, Hubert C, Alhenc-Gelas F, et al. An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. Journal of Clinical Investigation. 1990;86(4):1343–1346. doi: 10.1172/JCI114844
  86. Choudhary R, Kapoor MS, Singh A, Bodakhe SH. Therapeutic targets of renin-angiotensin system in ocular disorders. Journal of Current Ophthalmology. 2016;29(1):7–16. doi: 10.1016/j.joco.2016.09.009
  87. White AJ, Cheruvu SC, Sarris M, et al. Expression of classical components of the renin-angiotensin system in the human eye. Journal of the Renin-Angiotensin-Aldosterone System. 2015;16(1):59–66. doi: 10.1177/1470320314549791
  88. Qiao YC, Wang M, Pan YH, et al. The relationship between ACE/AGT gene polymorphisms and the risk of diabetic retinopathy in Chinese patients with type 2 diabetes. Journal of the Renin-Angiotensin-Aldosterone System. 2018;19(1):1470320317752955. doi: 10.1177/1470320317752955
  89. Bhatwadekar AD, Shughoury A, Belamkar A, Ciulla TA. Genetics of Diabetic Retinopathy, a Leading Cause of Irreversible Blindness in the Industrialized World. Genes. 2021;12(8):1200. doi: 10.3390/genes12081200
  90. Pontremoli R, Ravera M, Viazzi F, et al. Genetic polymorphism of the renin-angiotensin system and organ damage in essential hypertension. Kidney International. 2000;57(2):561–569. doi: 10.1046/j.1523-1755.2000.00876.x
  91. Luo S, Shi C, Wang F, Wu Z. Association between the Angiotensin-Converting Enzyme (ACE) Genetic Polymorphism and Diabetic Retinopathy-A Meta-Analysis Comprising 10,168 Subjects. International Journal of Environmental Research and Public Health. 2016;13(11):1142. doi: 10.3390/ijerph13111142
  92. Hashizume K, Mashima Y, Fumayama T, et al. Glaucoma Gene Research Group. Genetic polymorphisms in the angiotensin II receptor gene and their association with open-angle glaucoma in a Japanese population. Investigative Ophthalmology & Visual Science. 2005;46(6):1993–2001. doi: 10.1167/iovs.04-1100
  93. Schäfer E, Weger M, Birgül T, et al. Angiotensin-converting enzyme insertion/deletion polymorphism and retinal artery occlusion. Acta Ophthalmologica Scandinavica. 2006;84(3):305–308. doi: 10.1111/j.1600-0420.2006.00656.x
  94. Kutluturk I, Karagöz A, Bezgin T, et al. Relationship between angiotensin I-converting enzyme insertion/deletion gene polymorphism and retinal vein occlusion. Thrombosis Journal. 2014;12:17. doi: 10.1186/1477-9560-12-17
  95. Imauchi Y, Jeunemaître X, Boussion M, et al. Relation Between Renin-Angiotensin-Aldosterone System and Otosclerosis: A Genetic Association and In Vitro Study. Otology & Neurotology. 2008;29(3):295–301. doi: 10.1097/mao.0b013e318164d12c
  96. Liktor B, Csomor P, Szász CS, et al. No Evidence for the Expression of Renin-Angiotensin-Aldosterone System in Otosclerotic Stapes Footplates. Otology & Neurotology. 2013;34(5):808–815. doi: 10.1097/MAO.0b013e31827d8a80
  97. Chandra S, Narang R, Sreenivas V, et al. Association of angiotensin II type 1 receptor (A1166C) gene polymorphism and its increased expression in essential hypertension: a case-control study. PLoS One. 2014;9(7):e101502. doi: 10.1371/journal.pone.0101502
  98. Agachan B, Isbir T, Yilmaz H, Akoglu E. Angiotensin converting enzyme I/D, angiotensinogen T174M-M235T and angiotensin II type 1 receptor A1166C gene polymorphisms in Turkish hypertensive patients. Experimental & Molecular Medicine. 2003;35(6):545–549. doi: 10.1038/emm.2003.71
  99. Dzida G, Sobstyl J, Puzniak A, et al. Polymorphisms of angiotensin-converting enzyme and angiotensin II receptor type 1 genes in essential hypertension in a Polish population. Medical Science Monitor. 2001;7(6):1236–1241.
  100. Liu Y, Shan GL, Cui CY, et al. A1166C polymorphism of the angiotensin II type 1 receptor gene and essential hypertension in Han, Tibetan and Yi populations. Zhonghua yixue yichuanxue zazhi. 2003;20(3):220–224.
  101. Wu CK, Tsai CT, Chang YC, et al. Genetic polymorphisms of the angiotensin II type 1 receptor gene and diastolic heart failure. Journal of Hypertension. 2009;27(3):502–507. doi: 10.1097/hjh.0b013e32831fda3a
  102. Zakrzewski-Jakubiak M, de Denus S, Dubé MP, et al. Ten renin-angiotensin system-related gene polymorphisms in maximally treated Canadian Caucasian patients with heart failure. British Journal of Clinical Pharmacology. 2008;65(5):742–751. doi: 10.1111/j.1365-2125.2007.03091.x
  103. Pavlova OS, Ogurtsova SE, Gorbat TV, et al. Polygenic associations of renin-angiotensin-aldosterone system gene polymorphisms in essential arterial hypertension. Arterial’naya Gipertenziya. 2016;22(3):253–262 (In Russ.). doi: 10.18705/1607-419X-2016-22-3-253-262
  104. Dzielińska Z, Małek LA, Roszczynko M, Szperl M, Demkow M, Kądziela J, Prejbisz A, Zieliński A.T, Januszewicz A, Rużyłło W. Combined renin-angiotensin system gene polymorphisms and outcomes in coronary artery disease — a preliminary report. Kardiologia Polska. 2011;69(7):688–695.

Copyright (c) 2023 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies