Assessment of metabolic activity and energy supply of peripheral blood lymphocytes

Cover Page

Cite item

Full Text

Abstract

BACKGROUND: T-cells have the capability to change their metabolism in response to activation signals. Resting T-cells primarily use the oxidation of higher fatty acids and oxidative phosphorylation in mitochondria for their energy needs, whereas activated T-cells switch to aerobic glycolysis and glutaminolysis, using glucose, and glutamine as substrates, respectively.

AIM: To determine the metabolic activity and energy supply of peripheral blood lymphocytes in predominantly healthy northerners by measuring the intracellular content of HIF-1α (hypoxia-induced factor 1α), SIRT3 (sirtuin 3), and ATP (adenosine triphosphate).

MATERIALS AND METHODS: 39 volunteers, residents of the Arkhangelsk region (23 women and 16 men, 23–62 years old), were selected, and examined for this experiment. We established the total number of peripheral blood lymphocytes with CD-typing of lymphocytes (CD3+, CD4+, CD8+, CD71+) by indirect immunoperoxidase reactions, the content of HIF-1α and SIRT3 in the lymphocyte lysate employing enzyme immunoassay, the concentration of ATP by luminescent analysis through luciferin-luciferase reaction. Statistical analysis was conducted in "Statistica 10.0", cluster analysis was applied using the k-means method. Mean values (M) and standard deviations (SD) were calculated, the normal distribution was tested by the Kolmogorov–Smirnov and Lilliefors criterion. Student's t-test was calculated, and the differences were considered statistically significant at p <0.05.

RESULTS: The study revealed that the metabolic activity of lymphocytes associated with HIF-1α regulation differs significantly in the examined volunteers,, while in the group with a lower total number of lymphocytes and their subpopulations (CD3+, CD4+, CD8+, CD71+) there is a predominant glycolytic orientation of metabolism with proliferated cells energy supply.

CONCLUSION: Metabolic activity which can be determined by the HIF-1α/SIRT3 ratio, and the energy supply of lymphocytes have a substantial impact on their differentiation, proliferation, and functioning.

About the authors

Ol'ga V. Zubatkina

N. Laverov Federal Center for Integrated Arctic Research

Author for correspondence.
Email: ozbiochem@gmail.com
ORCID iD: 0000-0002-5039-2220
SPIN-code: 1581-5178

MD, Dr. Sci. (Biol.), professor

Russian Federation, Arkhangelsk

Lilija K. Dobrodeeva

N. Laverov Federal Center for Integrated Arctic Research

Email: dobrodeevalk@mail.ru
ORCID iD: 0000-0001-5080-6502
SPIN-code: 4518-6925
Russian Federation, Arkhangelsk

Anna V. Samodova

N. Laverov Federal Center for Integrated Arctic Research

Email: annapoletaeva2008@yandex.ru
ORCID iD: 0000-0001-9835-8083
SPIN-code: 6469-0408
Russian Federation, Arkhangelsk

Sergej D. Kruglov

N. Laverov Federal Center for Integrated Arctic Research

Email: stees67@yandex.ru
ORCID iD: 0000-0002-4085-409X
SPIN-code: 2532-9912
Russian Federation, Arkhangelsk

References

  1. Chapman NM, Chi H. Hallmarks of T-cell exit from quiescence. Cancer Immunol Res. 2018;6(5):502–508. doi: 10.1158/2326-6066.CIR-17-0605
  2. Almeida L, Lochner M, Berod L, Sparwasser T. Metabolic pathways in T cell activation and lineage differentiation. Semin Immunol. 2016;28(5):514–524. doi: 10.1016/j.smim.2016.10.009
  3. Dimeloe S, Burgener AV, Grehlert J, Hess C. T-cell metabolism governing activation, proliferation and differentiation; a modular view. Immunology. 2017;150(1):35–44. doi: 10.1111/imm.12655
  4. Maciolek JA, Pasternak JA, Wilson HL. Metabolism of activated T lymphocytes. Curr Opin Immunol. 2014;27:60–74. doi: 10.1016/j.coi.2014.01.006
  5. Baixauli F, Martín-Cófreces NB, Morlino G, et al. The mitochondrial fission factor dynamin-related protein 1 modulates T-cell receptor signalling at the immune synapse. EMBO J. 2011;30(7):1238–1250. doi: 10.1038/emboj.2011.25
  6. Palmer CS, Ostrowski M, Balderson B, et al. Glucose metabolism regulates T cell activation, differentiation, and functions. Front Immunol. 2015;6:1. doi: 10.3389/fimmu.2015.00001
  7. Desdín-Micó G, Soto-Heredero G, Mittelbrunn M. Mitochondrial activity in T cell. Mitochondrion. 2018;41:51–57. doi: 10.1016/j.mito.2017.10.006
  8. Ron-Harel N, Santos D, Ghergurovich JM, et al. Mitochondrial biogenesis and proteome remodeling promote one-carbon metabolism for T cell activation. Cell Metab. 2016;24(1):104–117. doi: 10.1016/j.cmet.2016.06.007
  9. Diebold L, Chandel NS. Mitochondrial ROS regulation of proliferating cells. Free Radic Biol Med. 2016;100:86–93. doi: 10.1016/j.freeradbiomed.2016.04.198
  10. Liesa M, Shirihai OS. Mitochondrial networking in T cell memory. Cell. 2016;166(1):9–10. doi: 10.1016/j.cell.2016.06.035
  11. van der Windt GJ, Everts B, Chang CH, et al. Mitochondrial respiratory capacity is a critical regulator of CD8+T cell memory development. Immunity. 2012;36(1):68–78. doi: 10.1016/j.immuni.2011.12.007
  12. Giralt A, Villarroya F. SIRT3, a pivotal actor in mitochondrial functions: metabolism, cell death and aging. Biochem J. 2012;444(1):1–10. doi: 10.1042/BJ20120030
  13. Shi LZ, Wang R, Huang G, et al. HIF-1alpha dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J Exp Med. 2011;208(7):1367–1376. doi: 10.1084/jem.20110278
  14. Kim JW, Tchernyshyov I, Semenza GL, Dang CV. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 2006;3(3):177–185. doi: 10.1016/j.cmet.2006.02.002
  15. Ullah MS, Davies AJ, Halestrap AP. The plasma membrane lactate transporter MCT4, but not MCT1, is up-regulated by hypoxia through a HIF-1alpha-dependent mechanism. J Biol Chem. 2006;281(14):9030–9037. doi: 10.1074/jbc.M511397200
  16. Pugha CW, Ratcliffe PJ. New horizons in hypoxia signaling pathways. Exp Cell Res. 2017;356(2):116–121. doi: 10.1016/j.yexcr.2017.03.008
  17. Thomas LW, Ashcroft M. Exploring the molecular interface between hypoxia-inducible factor signalling and mitochondria. Cell Mol Life Sci. 2019;76(9):1759–1777. doi: 10.1007/s00018-019-03039-y
  18. Tao JH, Barbi J, Pan F. Hypoxia-inducible factors in T lymphocyte differentiation and function. Am J Physiol Cell Physiol. 2015;309(9):C580–C589. doi: 10.1152/ajpcell.00204.2015
  19. Jaakkola P, Mole DR, Tian YM, et al. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science. 2001;292(5516):468–472. doi: 10.1126/science.1059796
  20. Gnanaprakasam JNR, Sherman JW, Wang R. MYC and HIF in shaping immune response and immune metabolism. Cytokine Growth Factor Rev. 2017;35:63–67. doi: 10.1016/j.cytogfr.2017.03.004
  21. Saravia J, Raynor JL, Chapman NM, et al. Signaling networks in immunometabolism. Cell Res. 2020;30(4):328–342. doi: 10.1038/s41422-020-0301-1
  22. Tan H, Yang K, Li Y, et al. Integrative proteomics and phosphoproteomics profiling reveals dynamic signaling networks and bioenergetics pathways underlying T cell activation. Immunity. 2017;46(3):488–503. doi: 10.1016/j.immuni.2017.02.010
  23. Salmond RJ. mTOR regulation of glycolytic metabolism in T cells. Front Cell Dev Biol. 2018:6;122. doi: 10.3389/fcell.2018.00122
  24. Mills E, O'Neill LA. Succinate: a metabolic signal in inflammation. Trends Cell Biol. 2014;24(5):313–320. doi: 10.1016/j.tcb.2013.11.008
  25. Chua YL, Dufour E, Dassa EP, et al. Stabilization of hypoxia-inducible factor-1alpha protein in hypoxia occurs independently of mitochondrial reactive oxygen species production. J Biol Chem. 2010;285(41):31277–31284. doi: 10.1074/jbc.M110.158485
  26. Chandel NS, McClintock DS, Feliciano CE, et al. Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia inducible factor-1alpha during hypoxia: a mechanism of O2 sensing. J Biol Chem. 2000;275(33):25130–25138. doi: 10.1074/jbc.M001914200
  27. Sena LA, Li S, Jairaman A, et al. Mitochondria are required for antigen-specific T cell activation through reactive oxygen species signaling. Immunity. 2013;38(2):225–236. doi: 10.1016/j.immuni.2012.10.020
  28. Palmer CS, Hussain T, Duette G. Regulators of glucose metabolism in CD4+ and CD8+ T Cells. Int Rev Immunol. 2016;35(6):477–488. doi: 10.3109/08830185.2015.1082178
  29. Houtkooper RH, Pirinen E, Auwerx J. Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol Cell Biol. 2016;13(4):225–238. doi: 10.1038/nrm3293

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Sequential/overlayed plots of variables HIF-1α, SIRT3, CD3+, CD4+, CD8+, CD71+.

Download (371KB)
3. Fig. 2. XYZ-graphs of the dependence of the lymphocytes with receptors (CD) content on the level of metabolic regulators, where X — SIRT3, Y — HIF-1α, Z — CD3+(a), CD4+(b), CD8+(c), CD71+(d).

Download (122KB)
4. Fig. 3. Quantitative changes in ATP (%) depending on the ratio of HIF-1α/SIRT3.

Download (416KB)

Copyright (c) 2023 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies