Association of alcohol consumption with telomere length in humans: a systematic review

Cover Page

Cite item

Full Text

Abstract

Telomeres are complex nucleoprotein structures with specific proteins of noncoding terminal regions of linear chromosomes of eukaryotic cells. Telomere DNA consists of a large number of short sequence repeats (TTAGGG in vertebrates). Telomeres protect chromosomes from their fusion and degradation, limit the proliferative potential of the cell, participate in the segregation of chromosomes during cell division, etc. Reduction of telomeres length is an important factor with significant impact on cell viability and function, aging, and leads to the development of various diseases including cancer.

Alcohol abuse has a significant impact on a person's health. Ethanol consumption by a human potentially affects the length of chromosome telomeres on the cellular level.

Current review represents systematic analysis of studies on the effect of alcohol consumption on telomere length in humans. PubMed and eLIBRARY.RU databases were explored for the combinations of the terms ("Ethanol" OR "Alcohol") AND "Telomer" with a limitation on the publication date until 01 January 2011. The search resulted in 269 studies. In accordance with the preset criteria, total 238 studies were excluded from the analysis, and 3 publications were excluded due to unavailability of full text. A total of 28 epidemiological and clinical studies were included for this study review.

The association of alcohol consumption with shortening of telomeres was reported in 16 of the studies conducted with various populations and cohorts including individuals with alcohol abuse, alcohol dependence, and some genetic variants of alcohol metabolism enzymes. 12 studies reported alcohol consumption was not associated with change in telomere length.

The analysis of reviewed studies allows to conclude that they are ambiguous and that there is further urgency to study the effect of alcohol on telomere length by engaging modern methods for its determination.

About the authors

Andrey V. Panchenko

Research Institute of Medical Primatology

Author for correspondence.
Email: ando_pan@mail.ru
ORCID iD: 0000-0002-5346-7646

MD, Dr. Sci. (Med.), chief research associate

Russian Federation, Sochi

Aslan A. Agumava

Research Institute of Medical Primatology

Email: aslan39@yandex.ru
ORCID iD: 0000-0003-2675-4057
SPIN-code: 5103-6356

MD, Cand. Sci. (Biol.), leader research associate

Russian Federation, Sochi

Laura E. Pavlova

Research Institute of Medical Primatology

Email: pavlova_laura@mail.ru
ORCID iD: 0000-0002-0638-0986
SPIN-code: 1437-4004

research associate

Russian Federation, Sochi

Alla V. Panchenko

Research Institute of Medical Primatology

Email: shmaliy.a.v@gmail.com
ORCID iD: 0000-0003-1294-751X
SPIN-code: 6426-5271

MD, Cand. Sci. (Med.), leader research associate

Russian Federation, Sochi

Maria F. Timina

Research Institute of Medical Primatology

Email: free_marshmallows@mail.ru
ORCID iD: 0000-0002-1916-238X
SPIN-code: 2506-1965

junior research associate

Russian Federation, Sochi

References

  1. Dmitriev PV, Vaseckij EC. Analiz telomernoj DNK: sovremennye podhody i metody. Ontogenez. 2009;40(3):163–184. (In Russ).
  2. Drapkina OM, Shepel RN. Telomeres and telomerase complex. The main clinical manifestation of genetic malfunctioning. Cardiovascular Therapy and Prevention. 2015;14(1):70–77. (In Russ). doi: 10.15829/1728-8800-2015-1-70-77
  3. Shay JW, Wright WE. Telomeres and telomerase: three decades of progress. Nat Rev Genet. 2019;20(5):299–309. doi: 10.1038/s41576-019-0099-1
  4. Spivak IM, Mikhelson VM, Spivak DL. Telomere length, telomerase activity, stress and aging. Advances in Gerontology. 2015;28(3):441–448. (In Russ).
  5. Semeraro MD, Smith C, Kaiser M, et al. Physical activity, a modulator of aging through effects on telomere biology. Aging (Albany NY). 2020;12(13):13803–13823. doi: 10.18632/aging.103504
  6. Weischer M, Bojesen SE, Nordestgaard BG. Telomere shortening unrelated to smoking, body weight, physical activity, and alcohol intake: 4,576 general population individuals with repeat measurements 10 years apart. PLoS Genet. 2014;10(3):e1004191. doi: 10.1371/journal.pgen.1004191
  7. GBD 2016 Alcohol Collaborators. Alcohol use and burden for 195 countries and territories, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2018;392(10152):1015–1035. doi: 10.1016/S0140-6736(18)31310-2
  8. Adamson SS, Brace LE, Kennedy BK. Alcohol and aging: from epidemiology to mechanism. Translational Medicine of Aging. 2017;1:18–23. doi: 10.1016/j.tma.2017.09.001
  9. Aida J, Yokoyama A, Izumiyama N, et al. Alcoholics show reduced telomere length in the oesophagus: oesophageal telomeres of alcoholics. J Pathol. 2011;223(3):410–416. doi: 10.1002/path.2817
  10. Grach A. Telomere shortening mechanisms. In: Stuart D, editor. The mechanisms of DNA replication. IntechOpen; 2013. P. 445–487. doi: 10.5772/55244
  11. Tang LJ, Rios RS, Zhang H, et al. Telomerase: a key player in the pathogenesis of non-alcoholic fatty liver disease? Expert Rev Gastroenterol Hepatol. 2021;15(7):811–819. doi: 10.1080/17474124.2021.1903318
  12. Dong R, Wang X, Wang L, et al. Yangonin inhibits ethanol-induced hepatocyte senescence via miR-194/FXR axis. Eur J Pharmacol. 2021;890:173653. doi: 10.1016/j.ejphar.2020.173653
  13. Harpaz T, Abumock H, Beery E, et al. The effect of ethanol on telomere dynamics and regulation in human cells. Cells. 2018;7(10):169. doi: 10.3390/cells7100169
  14. Needham BL, Adler N, Gregorich S, et al. Socioeconomic status, health behavior, and leukocyte telomere length in the National Health and Nutrition Examination Survey, 1999–2002. Soc Sci Med. 2013;85:1–8. doi: 10.1016/j.socscimed.2013.02.023
  15. Bohan NA, Prokopieva VD, Ivanova SA, et al. Oxidative stress and its correction in patients with alcohol dependence: results from research at the mental health research institute of the Tomsk National Research Medical Center. Journal of Addiction Problems. 2018;163(3):27–59. (In Russ).
  16. Prokopieva VD, Yarygina EG, Krotenko NM, et al. Indices of the antioxidant system and dopamine in blood plasma in the dynamics of microwave resonance therapy in patients with alcoholism. Zhurnal Nevrologii i Psikhiatrii imeni S.S. Korsakova. 2017;117(9):67–70. (In Russ.) doi: 10.17116/jnevro20171179167-70
  17. Dixit S, Whooley MA, Vittinghoff E, et al. Alcohol consumption and leukocyte telomere length. Sci Rep. 2019;9(1):1404. doi: 10.1038/s41598-019-38904-0
  18. Notterman DA, Schneper L. Telomere time-why we should treat biological age cautiously. JAMA Netw Open. 2020;3(5):e204352. doi: 10.1001/jamanetworkopen.2020.4352
  19. Pochinkova PA, Gorbatova MA, Narkevich AN, Grjibovski AM. Updated brief recommendations on writing and presenting systematic reviews: what’s new in PRISMA-2020 guidelines? Marine Medicine. 2022;8(2):88–101. (In Russ). doi: 10.22328/2413-5747-2022-8-2-88-101
  20. Pavanello S, Hoxha M, Dioni L, et al. Shortened telomeres in individuals with abuse in alcohol consumption. Int J Cancer. 2011;129(4):983–992. doi: 10.1002/ijc.25999
  21. Fyhrquist F, Silventoinen K, Saijonmaa O, et al. Telomere length and cardiovascular risk in hypertensive patients with left ventricular hypertrophy: the LIFE study. J Hum Hypertens. 2011;25(12):711–718. doi: 10.1038/jhh.2011.57
  22. Kozlitina J, Garcia CK. Red blood cell size is inversely associated with leukocyte telomere length in a large multi-ethnic population. PLoS One. 2012;7(12):e51046. doi: 10.1371/journal.pone.0051046
  23. Strandberg TE, Strandberg AY, Saijonmaa O, et al. Association between alcohol consumption in healthy midlife and telomere length in older men. The Helsinki Businessmen Study. Eur J Epidemiol. 2012;27(10):815–822. doi: 10.1007/s10654-012-9728-0
  24. Sun Q, Shi L, Prescott J, et al. Healthy lifestyle and leukocyte telomere length in U.S. women. PLoS One. 2012;7(5):e38374. doi: 10.1371/journal.pone.0038374
  25. Liu JJ, Prescott J, Giovannucci E, et al. One-carbon metabolism factors and leukocyte telomere length. Am J Clin Nutr. 2013;97(4):794–799. doi: 10.3945/ajcn.112.051557
  26. Bendix L, Thinggaard M, Fenger M, et al. Longitudinal changes in leukocyte telomere length and mortality in humans. J Gerontol A Biol Sci Med Sci. 2014;69(2):231–239. doi: 10.1093/gerona/glt153
  27. Raymond AR, Norton GR, Sareli P, et al. Relationship between average leucocyte telomere length and the presence or severity of idiopathic dilated cardiomyopathy in black Africans. Eur J Heart Fail. 2013;15(1):54–60. doi: 10.1093/eurjhf/hfs147
  28. von Känel R, Malan NT, Hamer M, et al. Comparison of telomere length in black and white teachers from South Africa: the sympathetic activity and ambulatory blood pressure in Africans study. Psychosom Med. 2015;77(1):26–32. doi: 10.1097/PSY.0000000000000123
  29. von Känel R, Bruwer EJ, Hamer M, et al. Association between objectively measured physical activity, chronic stress and leukocyte telomere length. J Sports Med Phys Fitness. 2017;57(10):1349–1358. doi: 10.23736/S0022-4707.16.06426-4
  30. de Rooij SR, van Pelt AM, Ozanne SE, et al. Prenatal undernutrition and leukocyte telomere length in late adulthood: the Dutch famine birth cohort study. Am J Clin Nutr. 2015;102(3):655–660. doi: 10.3945/ajcn.115.112326
  31. Shin C, Baik I. Associations between alcohol consumption and leukocyte telomere length modified by a common polymorphism of ALDH2. Alcohol Clin Exp Res. 2016;40(4):765–771. doi: 10.1111/acer.13005
  32. Wang H, Kim H, Baik I. Associations of alcohol consumption and alcohol flush reaction with leukocyte telomere length in Korean adults. Nutr Res Pract. 2017;11(4):334–339. doi: 10.4162/nrp.2017.11.4.334
  33. Latifovic L, Peacock SD, Massey TE, King WD. The influence of alcohol consumption, cigarette smoking, and physical activity on leukocyte telomere length. Cancer Epidemiol Biomarkers Prev. 2016;25(2):374–380. doi: 10.1158/1055-9965.EPI-14-1364
  34. Révész D, Milaneschi Y, Terpstra EM, Penninx BW. Baseline biopsychosocial determinants of telomere length and 6-year attrition rate. Psychoneuroendocrinology. 2016;67:153–162. doi: 10.1016/j.psyneuen.2016.02.007
  35. Williams DM, Buxton JL, Kantomaa MT, et al. Associations of leukocyte telomere length with aerobic and muscular fitness in young adults. Am J Epidemiol. 2017;185(7):529–537. doi: 10.1093/aje/kww123
  36. Pavanello S, Carta A, Mastrangelo G, et al. Relationship between telomere length, genetic traits and environmental/occupational exposures in bladder cancer risk by structural equation modelling. Int J Environ Res Public Health. 2018;15(1):5. doi: 10.3390/ijerph15010005
  37. Shen G, Huang JY, Huang YQ, Feng YQ. The Relationship between telomere length and cancer mortality: data from the 1999–2002 National Healthy and Nutrition Examination Survey (NHANES). J Nutr Health Aging. 2020;24(1):9–15. doi: 10.1007/s12603-019-1265-z
  38. Yamaki N, Matsushita S, Hara S, et al. Telomere shortening in alcohol dependence: roles of alcohol and acetaldehyde. J Psychiatr Res. 2019;109:27–32. doi: 10.1016/j.jpsychires.2018.11.007
  39. Martins de Carvalho L, Wiers CE, Manza P, et al. Effect of alcohol use disorder on cellular aging. Psychopharmacology (Berl). 2019;236(11):3245–3255. doi: 10.1007/s00213-019-05281-5
  40. Opstad TB, Kalstad AA, Holte KB, et al. Shorter leukocyte telomere lengths in healthy relatives of patients with coronary heart disease. Rejuvenation Res. 2020;23(4):324–332. doi: 10.1089/rej.2019.2258
  41. Honkonen M, Vääräniemi K, Saijonmaa O, et al. Leukocyte telomere length is inversely associated with arterial wave reflection in 566 normotensive and never-treated hypertensive subjects. Aging (Albany NY). 2020;12(12):12376–12392. doi: 10.18632/aging.103459
  42. Ahiawodzi P, Fitzpatrick AL, Djousse L, et al. Non-esterified fatty acids and telomere length in older adults: The Cardiovascular Health Study. Metabol Open. 2020;8:100058. doi: 10.1016/j.metop.2020.100058
  43. Vyas CM, Ogata S, Reynolds CF, et al. Telomere length and its relationships with lifestyle and behavioural factors: variations by sex and race/ethnicity. Age Ageing. 2021;50(3):838–846. doi: 10.1093/ageing/afaa186
  44. Bountziouka V, Musicha C, Allara E, et al. Modifiable traits, healthy behaviours, and leukocyte telomere length: a population-based study in UK Biobank. Lancet Healthy Longev. 2022;3(5):e321–e331. doi: 10.1016/S2666-7568(22)00072-1
  45. Aida J, Yokoyama A, Hara S, et al. Telomere shortening in the oral epithelium in relation to alcohol intake, alcohol dehydrogenase (ADH-1B), and acetaldehyde dehydrogenase (ALDH-2) genotypes and clinicopathologic features. J Oral Pathol Med. 2020;49(1):82–90. doi: 10.1111/jop.12947
  46. Li J, Guan Y, Akhtar F, et al. The association between alcohol consumption and telomere length: a meta-analysis focusing on observational studies. bioRxiv. 2018;374280. doi: 10.1101/374280
  47. Maugeri A, Barchitta M, Magnano San Lio R, et al. The effect of alcohol on telomere length: a systematic review of epidemiological evidence and a pilot study during pregnancy. Int J Environ Res Public Health. 2021;18(9):5038. doi: 10.3390/ijerph18095038
  48. Stefler D, Malyutina S, Maximov V, et al. Leukocyte telomere length and risk of coronary heart disease and stroke mortality: prospective evidence from a Russian cohort. Sci Rep. 2018;8(1):16627. doi: 10.1038/s41598-018-35122-y
  49. https://www.who.int/ World Health Organization. Global status report on alcohol and health 2018 [Internet]. Geneva: WHO; 2018. 450 p. Available from: https://www.who.int/publications/i/item/9789241565639
  50. Aida J, Yokoyama A, Shimomura N, et al. Telomere shortening in the esophagus of Japanese alcoholics: relationships with chromoendoscopic findings, ALDH2 and ADH1B genotypes and smoking history. PLoS One. 2013;8(5):e63860. doi: 10.1371/journal.pone.0063860
  51. Bijnens EM, Derom C, Thiery E, et al. Serum gamma-glutamyl transferase, a marker of alcohol intake, is associated with telomere length and cardiometabolic risk in young adulthood. Sci Rep. 2021;11(1):12407. doi: 10.1038/s41598-021-91987-6
  52. Ningarhari M, Caruso S, Hirsch TZ, et al. Telomere length is key to hepatocellular carcinoma diversity and telomerase addiction is an actionable therapeutic target. J Hepatol. 2021;74(5):1155–1166. doi: 10.1016/j.jhep.2020.11.052
  53. Demina IA, Semchenkova AA, Kagirova ZR, Popov AM. Flow cytometric measurement of absolute telomere length. Voprosy gematologii/onkologii i immunopatologii v pediatrii. 2018;17(4):68–74. (In Russ). doi: 10.24287/1726-1708-2018-17-4-68-74
  54. Luo Y, Viswanathan R, Hande MP, et al. Massively parallel single-molecule telomere length measurement with digital real-time PCR. Sci Adv. 2020;6(34):eabb7944. doi: 10.1126/sciadv.abb7944
  55. Kahl VFS, Allen JAM, Nelson CB, et al. Telomere length measurement by molecular combing. Front Cell Dev Biol. 2020;8:493. doi: 10.3389/fcell.2020.00493
  56. Lai TP, Zhang N, Noh J, et al. A method for measuring the distribution of the shortest telomeres in cells and tissues. Nat Commun. 2017;8(1):1356. doi: 10.1038/s41467-017-01291-z
  57. Cawthon RM. Telomere length measurement by a novel monochrome multiplex quantitative PCR method. Nucleic Acids Res. 2009;37(3):e21. doi: 10.1093/nar/gkn1027
  58. O’Callaghan NJ, Fenech M. A quantitative PCR method for measuring absolute telomere length. Biol Proced Online. 2011;13(1):3. doi: 10.1186/1480-9222-13-3
  59. Hemann MT, Strong MA, Hao LY, Greider CW. The shortest telomere, not average telomere length, is critical for cell viability and chromosome stability. Cell. 2001;107(1):67–77. doi: 10.1016/s0092-8674(01)00504-9

Copyright (c) 2023 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies