Physiological features of development and options for technology for obtaining pluripotent stem cells

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Topical issues related to the technology of isolation and mechanisms of development of pluripotent stem cells and their application in medicine are considered. The isolation, as well as the subsequent use of stem cells, still remains an unsolved problem both from a scientific point of view and especially in practical health care. There are three ways to produce pluripotent stem cells. First, they can be obtained in vitro from cell culture of the inner layer of early eggs. These are embryonic stem cells. Second, they can be obtained from somatic cells, as a result of the introduction of a group of genes that induce pluripotency. These are induced pluripotent stem cells. Finally, they can be obtained by transplanting the nucleus of somatic cells into an enucleated secondary egg. The microenvironment of the egg contributes to the reprogramming of the nucleus to a state close to the zygote. Mouse embryonic stem cells have many embryonic markers on their surface: carbohydrate receptors — CD15, alkaline phosphatase, factor 4 like Kruppel, estrogen-bound receptor, transcription factor CP2 like 1, T-box transcription factor and gastrulation homeobox brain 2. Embryonic mouse stem cells differentiate from the internal mass of cells at the stage of preimplantation, epiblast. This is established by comparing gene expression profiles and directly isolating embryonic stem cells from epiblasts of 4.5-day-old fertilized eggs. Embryonic stem cells derived from mouse embryos of later stages of development lose markers of pluripotency. Approximately 3 days after the elimination of the leukemia inhibition factor, the expression of the Oct4 gene leads to the loss of specificity markers by cells of the early embryo. Currently, the reprogramming of pluripotency is an active area of research in which significant technological progress has been made. So, the original gene cocktail consisting of four genes is used: Oct4, Sox2, Klf4 and cMyc. The obtained types of embryonic stem cells of mouse and human, from fertilized blastocysts, induced pluripotent stem cells undoubtedly exist. However, this does not apply to pluripotent stem cells derived from postnatal animals, humans, or from extraembryonic sources such as amniotic fluid or cord blood. Despite the fact that many laboratories are working to obtain stem cells from these objects, unfortunately, there is little reproducibility in this work, and the properties of the resulting cells and even their existence are still the subject of controversy.

 

About the authors

Alexander V. Moskalev

Military Medical Academy of S.M. Kirov

Author for correspondence.
Email: alexmav195223@yandex.ru
ORCID iD: 0000-0002-3403-3850
SPIN-code: 8227-2647

Doctor of Medical Sciences, Professor

Russian Federation, Saint Petersburg

Boris Yu. Gumilevskiy

Military Medical Academy of S.M. Kirov

Email: gumbu@mail.ru
SPIN-code: 3428-7704
Scopus Author ID: 6602391269
ResearcherId: J-1841-2017

Doctor of Medical Sciences, Professor

Russian Federation, Saint Petersburg

Vasiliy Ya. Apchel

Military Medical Academy of S.M. Kirov; A.I. Herzen Russian State Pedagogical University of the Ministry of Education and Science of the Russian Federation

Email: apchelvya@mail.ru
ORCID iD: 0000-0001-7658-4856
SPIN-code: 4978-0785
Scopus Author ID: 6507529350
ResearcherId: Е-8190-2019

Doctor of Medical Sciences, Professor

Russian Federation, Saint Petersburg; Saint Petersburg

Vasiliy N. Tsygan

Military Medical Academy of S.M. Kirov

Email: vn-t@mail.ru
ORCID iD: 0000-0003-1199-0911
SPIN-code: 7215-6206
Scopus Author ID: 6603136317

Doctor of Medical Sciences, Professor

Russian Federation, Saint Petersburg

References

  1. Moskalev AV, Sboichakov VB, Rudoi AS. Obshchaya immunologiya s osnovami klinicheskoi immunologii. Moscow: GEOTAR-Media, 2015. 351 p. (In Russ.).
  2. Moskalev AV, Gumilevskii BYu, Sboichakov VB. Meditsinskaya immunologiya s voprosami immunnoi nedostatochnosti i osnovami klinicheskoi immunologii. Saint Petersburg: VMA, 2019. 327 p. (In Russ.).
  3. Yarilin AA. Immunologiya. Moscow: GEOTAR-Media, 2010. 957 p. (In Russ.).
  4. lson K, De Nardin E. Contemporary clinical immunology and serology. New Jersey: Upper Saddle River, 2013. 439 p.
  5. Duggal G, Warrier S, Ghimire S, et al. Alternative Routes to Induce Naïve Pluripotency in Human Embryonic Stem Cells. Stem Cells. 2015;33(9):2686–2698. doi: 10.1002/stem.2071
  6. González F, Huangfu D. Mechanisms underlying the formation of induced pluripotent stem cells. Wiley Interdiscip Rev Dev Biol. 2016;5(1):39–65. doi: 10.1002/wdev.206
  7. Nichols J, Smith A. The origin and identity of embryonic stem cells. Development. 2011;138(1):3–8. doi: 10.1242/dev.050831
  8. De Los Angeles A, Ferrari F, Xi R, et al. Hallmarks of pluripotency. Nature. 2015;525(7570):469–478. doi: 10.1038/nature15515
  9. Dunn SJ, Martello G, Yordanov B, et al. Defining an essential transcription factor program for naïve pluripotency. Science. 2014;344(6188):1156–1160. doi: 10.1126/science.1248882
  10. Augui S, Nora EP, Heard E. Regulation of X-chromosome inactivation by the X-inactivation centre. Nat Rev Genet. 2011;12(6):429–442. doi: 10.1038/nrg2987
  11. Rossant J, Tam PPL. New Insights into Early Human Development: Lessons for Stem Cell Derivation and Differentiation. Cell Stem Cell. 2017;20(1):18–28. doi: 10.1016/j.stem.2016.12.004
  12. Abad M, Mosteiro L, Pantoja C, et al. Reprogramming in vivo produces teratomas and iPS cells with totipotency features. Nature. 2013;502:340–345. doi: 10.1038/nature12586
  13. Bulic-Jakus F, Katusic Bojanac A, Juric-Lekic G, et al. Teratoma: from spontaneous tumors to the pluripotency/malignancy assay. Wiley Interdiscip Rev Dev Biol. 2016;5(2):186–209. doi: 10.1002/wdev.219
  14. Silva M, Daheron L, Hurley H, et al. Generating iPSCs: translating cell reprogramming science into scalable and robust biomanufacturing strategies. Cell Stem Cell. 2015;16(1):13–17. doi: 10.1016/j.stem.2014.12.013
  15. Sohni A, Verfaillie CM. Multipotent adult progenitor cells. Best Pract Res Clin Haematol. 2011;24(1):3–11. doi: 10.1016/j.beha.2011.01.006
  16. Stadtfeld M, Hochedlinger K. Induced pluripotency: history, mechanisms, and applications. Genes Dev. 2010;24(20):2239–2263. doi: 10.1101/gad.1963910
  17. Tamm C, Pijuan Galitó S, Annerén C. A comparative study of protocols for mouse embryonic stem cell culturing. PLoS One. 2013;8(12):e81156. doi: 10.1371/journal.pone.0081156
  18. Ma H, Morey R, O’Neil RC, et al. Abnormalities in human pluripotent cells due to reprogramming mechanisms. Nature. 2014;511(7508):177–183. doi: 10.1038/nature13551
  19. Tachibana M, Amato P, Sparman M, et al. Human embryonic stem cells derived by somatic cell nuclear transfer. Cell. 2013;153(6): 1228–1238. doi: 10.1016/j.cell.2013.05.006
  20. McDonald JI, Celik H, Rois LE, et al. Reprogrammable CRISPR/Cas9-based system for inducing site-specific DNA methylation. Biol Open. 2016;5(6):866–874. doi: 10.1242/bio.019067
  21. Abbas AK, Lichtman AN, Pillai S. Cellular and Molecular Immunology. 9-th edition. Philadelphia, Pennsylvania: W.B. Saunders Company, 2018. 565 p.
  22. Sternberg SH, Redding S, Jinek M, et al. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature. 2014;507(7490): 62–67. doi: 10.1038/nature13011
  23. Thakore PI, D'Ippolito AM, Song L, et al. Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements. Nat Methods. 2015;12(12):1143–1149. doi: 10.1038/nmeth.3630
  24. Gjorevski N, Ranga A, Lutolf MP. Bioengineering approaches to guide stem cell-based organogenesis. Development. 2014;141(9):1794–1804. doi: 10.1242/dev.101048
  25. Kang H-W, Lee SJ, Ko IK, et al. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotechnol. 2016;34(3):312–319. doi: 10.1038/nbt.3413
  26. Yamaguchi T, Sato H, Kato-Itoh M, et al. Interspecies organogenesis generates autologous functional islets. Nature. 2017;542(7640):191–196. doi: 10.1038/nature21070
  27. Richardson BE, Lehmann R. Mechanisms guiding primordial germ cell migration: strategies from different organisms. Nat Rev Mol Cell Biol. 2010;11(1):37–49. doi: 10.1038/nrm2815
  28. Hilton IB, D'Ippolito AM, Vockley CM, et al. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat Biotechnol. 2015;33(5):510–517. doi: 10.1038/nbt.3199
  29. Geraghty RJ, Capes-Davis A, Davis JM, et al. Cancer Research UK. Guidelines for the use of cell lines in biomedical research. Br J Cancer. 2014;111(6):1021–1046. doi: 10.1038/bjc.2014.166
  30. Liu N, Zang R, Yang ST, Li Y. Stem cell engineering in bioreactors for large-scale bioprocessing. Eng Life Sci. 2014;14:4–15. doi: 10.1002/elsc.201300013
  31. Sasaki K, Nakamura T, Okamoto I, et al. The Germ Cell Fate of Cynomolgus Monkeys Is Specified in the Nascent Amnion. Dev Cell. 2016;39(2):169–185. doi: 10.1016/j.devcel.2016.09.007
  32. Slack JMW. The science of stem cells. John Wiley and Sons Inc., 2018. 248 p. doi: 10.1002/9781119235293
  33. Sasai Y. Next-generation regenerative medicine: organogenesis from stem cells in 3D culture. Cell Stem Cell. 2013;12(5):520–530. doi: 10.1016/j.stem.2013.04.009
  34. Wu Y, Chen L, Scott PG, Tredget E.E. Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis. Stem Cells. 2007;25(10):2648–2659. doi: 10.1634/stemcells.2007-0226
  35. Gilbert LA, Larson MH, Morsut L, et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell. 2013;154(2):442–451. doi: 10.1016/j.cell.2013.06.044
  36. Zetsche B, Gootenberg JS, Abudayyeh OO, et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell. 2015;163(3):759–771. doi: 10.1016/j.cell.2015.09.038
  37. Zia S, Mozafari M, Natasha G, et al. Hearts beating through decellularized scaffolds: whole-organ engineering for cardiac regeneration and transplantation. Crit Rev Biotechnol. 2016;36(4): 705–715. doi: 10.3109/07388551.2015.1007495

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Differentiation behavior of mouse embryonic stem cells. They can form embryoid bodies in vitro, teratomas in vivo, and contribute to mouse embryos if introduced at an early stage

Download (472KB)
3. Fig. 2. Procedure for making induced pluripotent stem cells

Download (529KB)
4. Fig. 3. Formation of iPS cells from fully differentiated precursors. Here chimeric mice are generated with some cells containing doxycycline-inducible OKSM transgenes. B-lymphocytes are cultured and transformed into iPSC

Download (256KB)

Copyright (c) 2022 Moskalev A.V., Gumilevskiy B.Y., Apchel V.Y., Tsygan V.N.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies