The main pathogenetic mechanisms of hypercoagulation in diabetes and the possibility of its drug correction

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Disorders in the blood coagulation system play an important role in the development of cardiovascular pathology in diabetes. Factors that cause them are hyperglycemia, insulin deficiency, insulin resistance, dyslipidemia, oxidative stress. The most significant changes are observed in the vascular-platelet link of hemostasis. Diabetes is characterized by morphological and functional changes in the endothelium of blood vessels. The activity of platelets increases, which is manifested by their high level of spontaneous aggregation and increased sensitivity to the action of activating factors. The role in the disturbance of hemostasis is played by increasing the activity of the von Willebrand factor, reflecting damage to endothelial cells. Diabetes is characterized by an increase in the activity of plasma clotting factors (I, II, III, VII, VIII, IX, XI, XII and XIII), activation of the callicrein-kinin system. In some cases, this correlates with the development of complications of diabetes. Characteristic disorders in the coagulation inhibition system are a decrease in the activity of antithrombin III, reduced formation of thrombin-antithrombin complexes, reduction of thrombomodulin and protein C. In diabetes, there is a decrease in fibrinolysis, due to a decrease in the expression of tissue activator plasminogen and an increase in the level of the inhibitor of the activator plasminogen. The possibilities of drug correction of hypercoagulation factors in diabetes are to achieve glycemic control with sugar-reducing drugs and elimination of dyslipidemia through hypolipidemic therapy. The most well-studied sugar-lowering drug that improves the state of the blood clotting system is metformin. The system of hemostasis in diabetic patients is positively affected by statins both due to the direct hypolipidemic effect, and by improving endothelial function and increasing fibrinolysis.

About the authors

Evgeny V. Kryukov

Military Medical Academy named after S.M. Kirov of the Ministry of Defense of the Russian Federation

Email: evgeniy.md@mail.ru
ORCID iD: 0000-0002-8396-1936
Scopus Author ID: 57208311867

doctor of medical sciences, professor

Russian Federation, Saint Petersburg

Alexey N. Kuchmin

Military Medical Academy named after S.M. Kirov of the Ministry of Defense of the Russian Federation

Email: kuchmin.63@mail.ru
SPIN-code: 7787-1364

doctor of medical science, professor

Russian Federation, Saint Petersburg

Elena P. Umanskaya

Military Medical Academy named after S.M. Kirov of the Ministry of Defense of the Russian Federation

Email: elenaumansk@mail.ru
SPIN-code: 2690-3373

candidate of medical sciences

Russian Federation, Saint Petersburg

Mikhail B. Nagorny

Military Medical Academy named after S.M. Kirov of the Ministry of Defense of the Russian Federation

Author for correspondence.
Email: ilikedm@mail.ru
SPIN-code: 1861-8100

candidate of medical sciences

Russian Federation, Saint Petersburg

Andrey A. Shevelev

Military Medical Academy named after S.M. Kirov of the Ministry of Defense of the Russian Federation

Email: tuostax@mail.ru
SPIN-code: 5766-8003

candidate of medical sciences

Russian Federation, Saint Petersburg

References

  1. Dedov II, Shestakova MV, Majorov AJu, editors. Standards of specialized diabetes care. 9th ed. Moscow; 2019. (In Russ.). doi: 10.14341/DM22151
  2. Cosentino F, Grant PJ, Aboyans V. 2019 Rekomendacii ESC/EASD po saharnomu diabetu, prediabetu i serdechno-sosudistym zabolevanijam Rabochaja gruppa po saharnomu diabetu, prediabetu i serdechno-sosudistym zabolevanijam Evropejskogo obshhestva kar-diologov (ESC, EOK) i Evropejskoj associacii po izucheniju saharnogo diabeta (EASD, EASD). Rossijskij kardiologicheskij zhurnal. 2020;25(4):101–160. (In Russ.). doi: 10.15829/1560-4071-2020-3839
  3. Bloomgarden ZT. Cardiovascular disease in diabetes. Diabetes Care. 2010;33(4):e49–54. doi: 10.2337/dc10-zb04
  4. Banga JD, Sixma JJ. Diabetes mellitus, vascular disease and thrombosis. Clin Haematol. 1986;15(2):465–492.
  5. Kryukov EV, Panevin TS, Popova LV. Age-related changes in the hemostasis system. Klinicheskaja medicina. 2020;98(1):9–12. (In Russ.).
  6. Standeven KF, Ariëns RAS, Whitaker P, et al. The effect of dimethyl biguanide on thrombin activity, FXIII activation, fibrin polymerization, and fibrin clot formation. Diabetes. 2002;51(1):189–197. doi: 10.2337/diabetes.51.1.189
  7. Tabit CE, Chung WB, Hamburg NM, Vita JA. Endothelial dysfunction in diabetes mellitus: molecular mechanisms and clinical implications. Rev Endocr Metab Disord. 2010;11(1):61–74. doi: 10.1007/s11154-010-9134-4
  8. Sudic D, Razmara M, Forslund M, et al. High glucose levels enhance platelet activation: involvement of multiple mechanisms. Br J Haematol. 2006;133(3):315–322. doi: 10.1111/j.1365-2141.2006.06012.x
  9. Ametov AS, Solov’eva OL. Saharnyj diabet 2 tipa. Problemy i reshenija. Moscow: GJeOTAR-Media; 2011. P. 183–210. (In Russ.).
  10. Barillari G, Fabbro E, Pasca S, Bigotto E. Coagulation and oxidative stress plasmatic levels in a type 2 diabetes population. Blood Coagul Fibrinolysis. 2009;20(4):290–296. doi: 10.1097/MBC.0b013e328329e49b
  11. Schneider DJ. Factors contributing to increased platelet reactivity in people with diabetes. Diabetes Care. 2009;32(4):525–527. doi: 10.2337/dc08-1865
  12. Petrik GG, Pavlishchuk SA, Kosmacheva ED. Diabetes mellitus and cardiovascular complications: focus on hemostasis. Rossijskij kardiologicheskij zhurnal. 2014;(3):114–118. (In Russ.). doi: 10.15829/1560-4071-2014-3-114-118
  13. Kearney K, Tomlinson D, Smith K, Ajjan R. Hypofibrinolysis in diabetes: a therapeutic target for the reduction of cardiovascular risk. Cardiovasc Diabetol. 2017;16(1):34. doi: 10.1186/s12933-017-0515-9
  14. Sirotkina OV, Zabotina AM, Taraskina AE, et al. Participation of IIb-IIIa glycoprotein in spontaneous platelet aggregation. Bjulleten’ jeksperimental’noj biologii i mediciny. 2007;143(4):398–401. (In Russ.).
  15. Breddin HK, Lippold R, Bittner M, et al. Spontaneous platelet aggregation as a predictive risk factor for vascular occlusions in healthy volunteers? Results of the HAPARG study. Haemostatic parameters as risk factors in healthy volunteers. Atherosclerosis. 1999;144(1):211–219. doi: 10.1016/s0021-9150(99)00056-8
  16. Shitikova AS. Trombocitarnyj gemostaz. Saint-Peterburg: SPb GMU; 2000. (In Russ.).
  17. Moroz EV, Artemkin EN, Kryukov EV, Chernetsov VA. Gastro-intestinal tract complications during antithrombotic therapy. Obshhaja reanimatologija. 2018;14(3):15–26. (In Russ.).
  18. Sokolov EI, Metelskaya VA, Perova NV. Platelet aggregation, dyslipoproteinemia and polyunsaturated fatty acids. Kardiovaskuljarnaja terapija i profilaktika. 2006;5(5):87–93. (In Russ.).
  19. Frankel DS, Meigs JB, Massaro JM, et al. Von Willebrand factor, type 2 diabetes mellitus, and risk of cardiovascular disease: the Framingham offspring study. Circulation. 2008;118(24): 2533–2539. doi: 10.1161/CIRCULATIONAHA.108.792986
  20. Novikov VI, Novikov KYu. Antiplatelet therapy use in diabetes mellitus patients: modern approaches and ischemic heart disease prevention perspectives. Consilium Medicum. 2018;20(4):16–23. (In Russ.).
  21. Folsom AR, Wu KK, Rasmussen M, et al. Determinants of population changes in fibrinogen and factor VII over 6 year: the atherosclerosis risk in communities (ARIC) study. Arterioscler Thromb Vasc Biol. 2000;20(2):601–606. doi: 10.1161/01.atv.20.2.601
  22. Corrado E, Rizzo M, Muratori I. Assotiation of elevated fibrinogen and CRP levels with carotid lesions in patients with newly diagnosed hypertension or type 2 diabetes. Arch Med Res. 2006;37(8): 1004–1009. doi: 10.1016/j.arcmed.2006.06.005
  23. Erem C, Hacihasanoğlu A, Celik S, et al. Coagulation and fibrinolysis parameters in type 2 diabetic patients with and without diabetic vascular complications. Med Princ Pract. 2005;14(1):22–30. doi: 10.1159/000081919
  24. Essing M, Nguyen G, Prié D, et al. 3-hydroxy-3-methylglutaryl coenzyme. A reductase inhibitors increase fibrinolytic activity in rat aortic endothelial cells. Role of geranylgeranylation and Rho proteins. Circ Res. 1998;83(7):683–690. doi: 10.1161/01.res.83.7.683
  25. Umpaichitra V, Hussain MM, Castells S. Plasminogen activator inhibitor-1 and tissue-plasminogen activator in minority adolesсents with type 2 diabetes and obesity. Pediatr Res. 2005;58(3):483–487. doi: 10.1203/01.PDR.0000164307.92308.09
  26. Gray RP, Panahloo A, Mohamed-Ali V, et al. Proinsulin-like molecules and plasminogen activator inhibitor type 1 (PAI-1) activity in diabetic and non-diabetic subjects with and without myocardial infarction. Atherosclerosis. 1997;130(1–2):171–178. doi: 10.1016/s0021-9150(96)06070-4
  27. Grant PJ. Beneficial effects of metformin on haemostasis and vascular function in man. Diabetes Metab. 2003;29(4 pt 2): 6S44–6S52. doi: 10.1016/s1262-3636(03)72787-6
  28. Laufs U, La Fata V, Plutzky J, Liao JK. Upregulation of endothelial nitric oxide synthase by HMG CoA reductase inhibitors. Circulation. 1998;97(12):1129–1135. doi: 10.1161/01.cir.97.12.1129
  29. Formoso G, De Filippis EA, Michetti N, et al. Decreased in vivo oxidative stress and decreased platelet activation following metformin treatment in newly diagnosed type 2 diabetic subjects. Diabetes Metab Res Rev. 2008;24(3):231–237. doi: 10.1002/dmrr.794
  30. Fanghänel G, Silva U, Sanchez-Reyes L. Effects of metformin on fibrinogen levels in obese patients with type 2 diabetes. Rev Invest Clin. 1998;50(5):389–394.
  31. Anfossi G, Russo I, Bonomo K, Trovati M. The cardiovascular effects of metformin: further reasons to consider an old drug as a cornerstone in the therapy. Curr Vasc Pharmacol. 2010;8(3):327–337. doi: 10.2174/157016110791112359
  32. Gin H, Roudaut MF, Vergnot V, et al. Effect of metformin on fibrinolytic parameters in insulintreated, type 2 diabetic patients. Diabetes Metab. 2003;29(5):505–508. doi: 10.1016/s1262-3636(07)70064-2
  33. Nagi DK, Yudkin JS. Effects of metformin on insulin resistance, risk factors for cardiovascular disease, and plasminogen activator inhibitor in NIDDM subjects. A study of two ethnic groups. Diabetes Care. 1993;16(4):621–629. doi: 10.2337/diacare.16.4.621
  34. Janka HU. Platelet and endothelial function tests during metformin treatment in diabetes mellitus (short communication). Horm Metab Res. 1985;15:120–122.
  35. Zadionchenko VS, Shehjan GG, Jalymov AA. Mesto statinov v terapii bol’nyh ishemicheskoj bolezn’ju serdca. Russkij medicinskij zhurnal. 2004;12(9):513. (In Russ.).
  36. Oynotkinova OSh, Nikonov EL, Kryukov EV, Baranov AP. Therapeutic aspects of the choice of antithrombotic therapy in patients with multifocal lesions of peripheral arteries. Terapevticheskij arhiv. 2019;91(9):158–164. (In Russ.).
  37. Severina AS, Shestakova MV. Narushenie sistemy gemostaza u bol’nyh saharnym diabetom. Saharnyj diabet. 2004;(1):62–67. (In Russ.).
  38. Alessi MC, Irène JV. PAI-1 and the metabolic syndrome: the links, causes and consequences. Arterioscler Thromb Vasc Biol. 2006;26(10):2200–2207. doi: 10.1161/01.ATV.0000242905.41404.68
  39. Festa A, Williams K, Tracy RP, et al. Progression of plasminogen activator inhibitor-1 and fibrinogen levels in relation to incident type 2 diabetes. Circulation. 2006;113(14):1753–1759. doi: 10.1161/CIRCULATIONAHA.106.616177
  40. Grant PJ. Metformin reduces circulating factor VII concentrations in patients with type 2 diabetes mellitus. Thromb Hamost. 1998;80(1):209–210.
  41. McBane RD, Hardison RM, Sobel BE; Bari 2D Study Group. Comparison of plasminogen activator inhibitor-1, tissue type plasminogen activator antigen, fibrinogen, and D-dimer levels in various age decades in patients with type 2 diabetes mellitus and stable coronary artery disease (from the BARI 2D trial). Am J Cardiol. 2010;105(1):17–24. doi: 10.1016/j.amjcard.2009.08.643
  42. Michelson A. Platelets. Amsterdam, Boston: Academic Press, Elserver Inc; 2007.
  43. Pacher P, Szabó C. Role of poly (ADP-ribose) polymerase-1 activation in the pathogenesis of diabetic complications: endothelial dysfunction, as a common underlying theme. Antioxid Redox Signal. 2005;7(11–12):1568–1580. doi: 10.1089/ars.2005.7.1568
  44. Patel A, MacMahon S, Chalmers J, et al; Advance Collaborative Group. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med. 2008;358(24):2560-2572. doi: 10.1056/NEJMoa080298
  45. Potter van Loon BJ, Kluft C, Radder JK, et al. The cardiovascular risk factor plasminogen activator inhibitor type 1 is related to insulin-resistance. Metabolism. 1993;42(8):945–949. doi: 10.1016/0026-0495(93)90005-9

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Kryukov E.V., Kuchmin A.N., Umanskaya E.P., Nagorny M.B., Shevelev A.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies