3D printing technologies in the treatment of patients with injuries and diseases of the forearm and hand


Cite item

Full Text

Abstract

In the last decade, the range of applications of three-dimensional printing (3D printing) in surgery has been expanding. In traumatology, orthopedics and rehabilitation of injuries of the upper limbs, there is growing interest in creating splints and orthoses that can take into account the individual anatomical features of the human body. Traditional orthoses and splints are not always convenient and can lead to undesirable consequences such as pain, swelling, pressure, or even lack of therapeutic effect. The prospects of 3D printing technology in medicine from the beginning of its mass introduction, the features of modeling, manufacturing and application of means for immobilization of injuries and diseases of the upper extremities according to domestic and foreign publications over the past 5 years are considered. The data on the functionality of 3D-printed tire structures and orthoses used to immobilize the upper limb are analyzed in comparison with traditional methods of fixation. Three-dimensional images of patients with injuries obtained using computed tomography, magnetic resonance imaging or using a 3D scanner can be used to create virtual 3D models of the forearm, wrist, fingers of the patient, and 3D printing with these anatomical models allows you to create personalized tires and orthoses. Thanks to an individual approach and the use of various solutions, three-dimensional printing can be widely used in traumatology and orthopedics. As a result of this approach, it becomes possible to implement and effectively use a variety of solutions that will find support in healthcare.

About the authors

V V Khominets

Военно-медицинская академия им. С.М. Кирова

Email: vmeda-nio@mil.ru
Санкт-Петербург

S A Peleshok

Военно-медицинская академия им. С.М. Кирова

Email: vmeda-nio@mil.ru
Санкт-Петербург

D A Volov

Военно-медицинская академия им. С.М. Кирова

Email: vmeda-nio@mil.ru
Санкт-Петербург

M V Titova

Военно-медицинская академия им. С.М. Кирова

Email: vmeda-nio@mil.ru
Санкт-Петербург

M I Eliseeva

Военно-медицинская академия им. С.М. Кирова

Email: vmeda-nio@mil.ru
Санкт-Петербург

S V Kushnarev

Военно-медицинская академия им. С.М. Кирова

Email: vmeda-nio@mil.ru
Санкт-Петербург

A V Shirshin

Военно-медицинская академия им. С.М. Кирова

Email: vmeda-nio@mil.ru
Санкт-Петербург

V N Adamenko

Военно-медицинская академия им. С.М. Кирова

Email: vmeda-nio@mil.ru
Санкт-Петербург

Ya I Nebylitsa

Военно-медицинская академия им. С.М. Кирова

Email: vmeda-nio@mil.ru
Санкт-Петербург

References

  1. Кушнарев, С.В. Создание трехмерных физических моделей на основе изображений компьютерной томографии (первый опыт) / С.В. Кушнарев [и др.] // Известия Росс. воен.-мед. акад. - 2018. - № 4. - С. 53-56.
  2. Нагибович, О.А. 3D-печать для медицины / О.А. Нагибович [и др.] // Первая российская конференция: физика - наукам о жизни: тез. докл. - СПб., 2016. - С. 155.
  3. Нагибович, О.А. Применение технологии 3D-печати в медицине / О.А. Нагибович [и др.] // Клин. патофизиол. - 2017. - Т. 23, № 3. - С. 14-21.
  4. Ayoub, A.F. A novel approach for planning orthognathic surgery: the integration of dental casts into three-dimensional printed mandibular models / A.F. Ayoub [et al.] // Int. J. Oral. Maxillofac Surg. - 2014. - Vol. 43. - P. 454-459.
  5. Bangeas, P. Rapid prototyping in aortic surgery / P. Bangeas [et al.] // Interactive CardioVascular and Thoracic Surgery. - 2016. - Vol. 22. - P. 513-514.
  6. Baronio, G. A Critical Analysis of a Hand Orthosis Reverse Engineering and 3D Printing Process / G. Baronio [et al.] // Applied Bionics and Biomechanics. - 2016. - P. 1-7.
  7. Baronio, G. Concept and Design of a 3D Printed Support to Assist Hand Scanning for the Realization of Customized Orthosis / G. Baronio [et al.] // Appl. Bionics Biomech. - 2017. - P. 1-8.
  8. Brown, M. Postburn contractures of the hand / M. Brown[et al.] // Hand Clin. - 2017. - Vol. 33. - P. 317-331.
  9. Bunch, P.M. A biomechanical approach to distal radius fractures for the emergency radiologist / P.M. Bunch [et al.] // Emerg. Radiol. - 2016. - Vol. 23, № 2. - P. 175- 285.
  10. Chae, M.P. Emerging Applications of Bedside 3D Printing in Plastic Surgery / M.P. Chae [et al.] // Front Surg. - 2015. - Vol. 2. - P. 25.
  11. Chae, M.P. Image-guided 3D-printing and haptic modeling in plastic surgery / M.P. Chae [et al.] // London: CRC Taylor and Francis Press, 2014. - P. 819-830.
  12. Chen, Y.-J. Application of 3D-printed and patient-specific cast for the treatment of distal radius fractures: initial experience / Y.-J. Chen [et al.] // 3D Printing in Medicine. - 2017. - Vol. 3, № 11. - P. 1-9.
  13. Gadia, A. Emergence of Three-Dimensional Printing Technology and Its Utility in Spine Surgery / A. Gadia [et al.] // Asian Spine J. - 2018. - Vol. 12, № 2. - P. 365-371.
  14. Garg, B. Current status of 3D printing in spine surgery / B. Garg, N.Mehta // J. Clinic. Orthop. Trauma. - 2018. - P. 1-8.
  15. Garg, B. Outcome and safety analysis of 3D printed patient specific pedicle screw jigs for complex spinal deformities: A comparative study / B. Garg [et al.] // J. Spine- 2018. - P. 1-21.
  16. Gerstle, T.L. A plastic surgery application in evolution: three- dimensional printing / T.L. Gerstle [et al.] // Plast. Reconstr. Surg. - 2014. - Vol. 133. - P. 446-451.
  17. Ho-Sung, N. The Application of Three-Dimensional Printed Finger Splints for Post Hand Burn Patients: A Case Series Investigation / N. Ho-Sung [et al.] // Ann. Rehabil. Med. - 2018. - Vol. 42, № 4. - P. 634-638.
  18. Kim, H. Case study: hybrid model for the customized wrist orthosis using 3D printing / H. Kim [et al.] // J. Mech. Sci. Technol. - 2015. - Vol. 29, № 12. - P. 5151-5156.
  19. Kim, S.J. Effect of personalized wrist orthosis for wrist pain with three-dimensional scanning and printing technique: A preliminary, randomized, controlled, open-label study / S.J. Kim [et al.] // Prosthetics and Orthotics International. - 2018. - Vol. 42, № 6. - P. 636-643
  20. Lazar, H.L. Three-dimensional printing in cardiac surgery: Enhanced imagery results in enhanced outcomes / H. L. Lazar // J. Card. Surg. - 2018. - Vol. 33. - P. 1-28.
  21. Li, J. Feasibility study applying a parametric model as the design generator for 3D- printed orthosis for fracture immobilization / J. Li [et al.] // 3D Printing in Medicine. -2018. - Vol. 4, № 1. - P. 1-15.
  22. Li, J. Rapid customization system for 3D-printed splint using programmable modeling technique - a practical approach / J. Li [et al.] // 3D Printing in Medicine. - 2018. - Vol. 4. - P. 1-6.
  23. Li, С. Applications of Three-Dimensional Printing in Surgery / С. Li [et al.] // Surgical Innovation - 2016. - Vol. 24, № 1. - P. 82-88.
  24. Lin, H. A rapid and intelligent designing technique for patient- specific and 3D-printed orthopedic cast / H. Lin [et al.] // 3D Print Med. J. -2015. - Vol. 2, № 4. - P. 1-10.
  25. Lunsfort, C. Innovations with 3-dimensional printing in physical medicine and rehabilitation: a review of the literature / C. Lunsfort [et al.] // PM&R J. -2016. - Vol. 8, № 12. - P. 1201-1212.
  26. Souza M.A. Proposal of custom made wrist orthoses based on 3D modelling and 3D printing / M.A. Souza [et al.] // 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). - 2017. - P. 3789-3792.
  27. Negi S. Basics and applications of rapid prototyping medical models / S. Negi [et al.] // Rapid Prototyping J. -2014. - Vol. 20, № 3. - P. 256-267.
  28. Olszewski, R. Accuracy of three-dimensional, paper-based models generated using a low-cost, three-dimensional printer / R. Olszewski [et al.] // J. Craniomaxillofac. Surg. - 2014. - Vol. 42, № 8. - P. 1847-1852.
  29. Palousek, D. Pilot study of the wrist orthosis design process / D. Palousek [et al.] // Rapid Prototyping J. - 2014. - Vol. 20, № 1. - P. 27-32.
  30. Paterson, A.M. Comparing additive manufacturing technologies for customised wrist splints / A.M. Paterson [et al.] // Rapid Prototyping J. - 2015. Vol. 21, № 3. - P. 230-243.
  31. Pucci J.U. Connolly Three-dimensional printing: technologies, applications, and limitations in neurosurgery / J.U. Pucci [et al.] // Biotechn. Advances. - 2017. - Vol. 35, № 5. - P. 521-529.
  32. Trauner, K.B. The Emerging Role of 3D Printing in Arthroplasty and Orthopedics / K.B. Trauner // J. Аrthroplasty. - 2018. - Vol. 33. - P. 2352-2354.
  33. Vaish, A. 3D printing and its applications in Orthopedics / A. Vaish [et al.] // J. Clin. Orthop. Trauma. - 2018. - Vol. 9. - P. S74-75.
  34. Wong, T.M. The use of three-dimensional printing technology in orthopaedic surgery: A review / T.M. Wong [et al.] // J. Orthop. Surg. - 2017. - Vol. 25, № 1. - P. 1-7.
  35. Yu-an, J. Additive Manufacturing of Custom Orthoses and Prostheses: A Review / J. Yu-an [et al.] // CIRP 25th Design Conference Innovative Product Creation. - 2015. - Vol. 36. - P. 199-204.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2020 Khominets V.V., Peleshok S.A., Volov D.A., Titova M.V., Eliseeva M.I., Kushnarev S.V., Shirshin A.V., Adamenko V.N., Nebylitsa Y.I.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».