Технологии 3D-печати в лечении пациентов с травмами и заболеваниями предплечья и кисти


Цитировать

Полный текст

Аннотация

В последнее десятилетие спектр применения трехмерной печати (3D-печати) в хирургии расширяется. В травматологии, ортопедии и реабилитации повреждений верхних конечностей растет интерес к созданию шин и ортезов, способных учитывать индивидуальные анатомические особенности человеческого тела. Традиционные ортезы и шины не всегда удобны и могут приводить к таким нежелательным последствиям, как боль, отек, давление или даже отсутствие терапевтического эффекта. Рассматриваются перспективность технологии 3D-печати в медицине с начала ее массового внедрения, особенности моделирования, изготовления и применения средств иммобилизации повреждений и заболеваний верхних конечностей по данным отечественных и зарубежных публикаций за последние5 лет. Анализируются данные о функциональности 3D-печатных конструкций шин и ортезов, используемых для иммобилизации верхней конечности, по сравнению с традиционными способами фиксации. Трехмерные изображения пациентов с травмой, полученные с помощью компьютерной томографии, магнитно-резонансной томографии или с использованием 3D-сканера, могут быть использованы для создания виртуальных 3D-моделей предплечья, запястья, пальцев пациента, а 3D-печать с учетом этих анатомических моделей позволяет создавать персонализированные шины и ортезы. Благодаря индивидуальному подходу и использованию разнообразных решений трехмерная печать может найти широкое применение в травматологии и ортопедии. В результате такого подхода возникает возможность внедрять и эффективно использовать разнообразные решения, которые найдут поддержку в здравоохранении.

Об авторах

В В Хоминец

Военно-медицинская академия им. С.М. Кирова

Email: vmeda-nio@mil.ru
Санкт-Петербург

С А Пелешок

Военно-медицинская академия им. С.М. Кирова

Email: vmeda-nio@mil.ru
Санкт-Петербург

Д А Волов

Военно-медицинская академия им. С.М. Кирова

Email: vmeda-nio@mil.ru
Санкт-Петербург

М В Титова

Военно-медицинская академия им. С.М. Кирова

Email: vmeda-nio@mil.ru
Санкт-Петербург

М И Елисеева

Военно-медицинская академия им. С.М. Кирова

Email: vmeda-nio@mil.ru
Санкт-Петербург

С В Кушнарев

Военно-медицинская академия им. С.М. Кирова

Email: vmeda-nio@mil.ru
Санкт-Петербург

А В Ширшин

Военно-медицинская академия им. С.М. Кирова

Email: vmeda-nio@mil.ru
Санкт-Петербург

В Н Адаменко

Военно-медицинская академия им. С.М. Кирова

Email: vmeda-nio@mil.ru
Санкт-Петербург

Я И Небылица

Военно-медицинская академия им. С.М. Кирова

Email: vmeda-nio@mil.ru
Санкт-Петербург

Список литературы

  1. Кушнарев, С.В. Создание трехмерных физических моделей на основе изображений компьютерной томографии (первый опыт) / С.В. Кушнарев [и др.] // Известия Росс. воен.-мед. акад. - 2018. - № 4. - С. 53-56.
  2. Нагибович, О.А. 3D-печать для медицины / О.А. Нагибович [и др.] // Первая российская конференция: физика - наукам о жизни: тез. докл. - СПб., 2016. - С. 155.
  3. Нагибович, О.А. Применение технологии 3D-печати в медицине / О.А. Нагибович [и др.] // Клин. патофизиол. - 2017. - Т. 23, № 3. - С. 14-21.
  4. Ayoub, A.F. A novel approach for planning orthognathic surgery: the integration of dental casts into three-dimensional printed mandibular models / A.F. Ayoub [et al.] // Int. J. Oral. Maxillofac Surg. - 2014. - Vol. 43. - P. 454-459.
  5. Bangeas, P. Rapid prototyping in aortic surgery / P. Bangeas [et al.] // Interactive CardioVascular and Thoracic Surgery. - 2016. - Vol. 22. - P. 513-514.
  6. Baronio, G. A Critical Analysis of a Hand Orthosis Reverse Engineering and 3D Printing Process / G. Baronio [et al.] // Applied Bionics and Biomechanics. - 2016. - P. 1-7.
  7. Baronio, G. Concept and Design of a 3D Printed Support to Assist Hand Scanning for the Realization of Customized Orthosis / G. Baronio [et al.] // Appl. Bionics Biomech. - 2017. - P. 1-8.
  8. Brown, M. Postburn contractures of the hand / M. Brown[et al.] // Hand Clin. - 2017. - Vol. 33. - P. 317-331.
  9. Bunch, P.M. A biomechanical approach to distal radius fractures for the emergency radiologist / P.M. Bunch [et al.] // Emerg. Radiol. - 2016. - Vol. 23, № 2. - P. 175- 285.
  10. Chae, M.P. Emerging Applications of Bedside 3D Printing in Plastic Surgery / M.P. Chae [et al.] // Front Surg. - 2015. - Vol. 2. - P. 25.
  11. Chae, M.P. Image-guided 3D-printing and haptic modeling in plastic surgery / M.P. Chae [et al.] // London: CRC Taylor and Francis Press, 2014. - P. 819-830.
  12. Chen, Y.-J. Application of 3D-printed and patient-specific cast for the treatment of distal radius fractures: initial experience / Y.-J. Chen [et al.] // 3D Printing in Medicine. - 2017. - Vol. 3, № 11. - P. 1-9.
  13. Gadia, A. Emergence of Three-Dimensional Printing Technology and Its Utility in Spine Surgery / A. Gadia [et al.] // Asian Spine J. - 2018. - Vol. 12, № 2. - P. 365-371.
  14. Garg, B. Current status of 3D printing in spine surgery / B. Garg, N.Mehta // J. Clinic. Orthop. Trauma. - 2018. - P. 1-8.
  15. Garg, B. Outcome and safety analysis of 3D printed patient specific pedicle screw jigs for complex spinal deformities: A comparative study / B. Garg [et al.] // J. Spine- 2018. - P. 1-21.
  16. Gerstle, T.L. A plastic surgery application in evolution: three- dimensional printing / T.L. Gerstle [et al.] // Plast. Reconstr. Surg. - 2014. - Vol. 133. - P. 446-451.
  17. Ho-Sung, N. The Application of Three-Dimensional Printed Finger Splints for Post Hand Burn Patients: A Case Series Investigation / N. Ho-Sung [et al.] // Ann. Rehabil. Med. - 2018. - Vol. 42, № 4. - P. 634-638.
  18. Kim, H. Case study: hybrid model for the customized wrist orthosis using 3D printing / H. Kim [et al.] // J. Mech. Sci. Technol. - 2015. - Vol. 29, № 12. - P. 5151-5156.
  19. Kim, S.J. Effect of personalized wrist orthosis for wrist pain with three-dimensional scanning and printing technique: A preliminary, randomized, controlled, open-label study / S.J. Kim [et al.] // Prosthetics and Orthotics International. - 2018. - Vol. 42, № 6. - P. 636-643
  20. Lazar, H.L. Three-dimensional printing in cardiac surgery: Enhanced imagery results in enhanced outcomes / H. L. Lazar // J. Card. Surg. - 2018. - Vol. 33. - P. 1-28.
  21. Li, J. Feasibility study applying a parametric model as the design generator for 3D- printed orthosis for fracture immobilization / J. Li [et al.] // 3D Printing in Medicine. -2018. - Vol. 4, № 1. - P. 1-15.
  22. Li, J. Rapid customization system for 3D-printed splint using programmable modeling technique - a practical approach / J. Li [et al.] // 3D Printing in Medicine. - 2018. - Vol. 4. - P. 1-6.
  23. Li, С. Applications of Three-Dimensional Printing in Surgery / С. Li [et al.] // Surgical Innovation - 2016. - Vol. 24, № 1. - P. 82-88.
  24. Lin, H. A rapid and intelligent designing technique for patient- specific and 3D-printed orthopedic cast / H. Lin [et al.] // 3D Print Med. J. -2015. - Vol. 2, № 4. - P. 1-10.
  25. Lunsfort, C. Innovations with 3-dimensional printing in physical medicine and rehabilitation: a review of the literature / C. Lunsfort [et al.] // PM&R J. -2016. - Vol. 8, № 12. - P. 1201-1212.
  26. Souza M.A. Proposal of custom made wrist orthoses based on 3D modelling and 3D printing / M.A. Souza [et al.] // 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). - 2017. - P. 3789-3792.
  27. Negi S. Basics and applications of rapid prototyping medical models / S. Negi [et al.] // Rapid Prototyping J. -2014. - Vol. 20, № 3. - P. 256-267.
  28. Olszewski, R. Accuracy of three-dimensional, paper-based models generated using a low-cost, three-dimensional printer / R. Olszewski [et al.] // J. Craniomaxillofac. Surg. - 2014. - Vol. 42, № 8. - P. 1847-1852.
  29. Palousek, D. Pilot study of the wrist orthosis design process / D. Palousek [et al.] // Rapid Prototyping J. - 2014. - Vol. 20, № 1. - P. 27-32.
  30. Paterson, A.M. Comparing additive manufacturing technologies for customised wrist splints / A.M. Paterson [et al.] // Rapid Prototyping J. - 2015. Vol. 21, № 3. - P. 230-243.
  31. Pucci J.U. Connolly Three-dimensional printing: technologies, applications, and limitations in neurosurgery / J.U. Pucci [et al.] // Biotechn. Advances. - 2017. - Vol. 35, № 5. - P. 521-529.
  32. Trauner, K.B. The Emerging Role of 3D Printing in Arthroplasty and Orthopedics / K.B. Trauner // J. Аrthroplasty. - 2018. - Vol. 33. - P. 2352-2354.
  33. Vaish, A. 3D printing and its applications in Orthopedics / A. Vaish [et al.] // J. Clin. Orthop. Trauma. - 2018. - Vol. 9. - P. S74-75.
  34. Wong, T.M. The use of three-dimensional printing technology in orthopaedic surgery: A review / T.M. Wong [et al.] // J. Orthop. Surg. - 2017. - Vol. 25, № 1. - P. 1-7.
  35. Yu-an, J. Additive Manufacturing of Custom Orthoses and Prostheses: A Review / J. Yu-an [et al.] // CIRP 25th Design Conference Innovative Product Creation. - 2015. - Vol. 36. - P. 199-204.

© Хоминец В.В., Пелешок С.А., Волов Д.А., Титова М.В., Елисеева М.И., Кушнарев С.В., Ширшин А.В., Адаменко В.Н., Небылица Я.И., 2020

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах