Modern concepts of treatment of phantom limb pain

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Phantom limb pain is a specific entity of neuropathic pain that develops in 30%–85% of patients with amputated limbs and leads to considerable worsening of the quality of life. The number of such cases increases during military conflicts. It can be caused by a traumatic amputation due to mine blast injury, peculiarities of provided medical assistance, and the special psychological state of casualties being in extremely stressful situations at the moment of wounding. Phantom limb pain development is accompanied by multiple functional and structural changes at different levels of the peripheral and central nervous systems. As a result, different theories of pathogenesis are proposed. However, at present, no final opinion concerns mechanisms of phantom limb pain development. Although different versions of drug and non-drug therapy have been suggested, none of them turned out to be universal and fully effective. Many medications were found to be linked to phantom limb pain pathogenesis; however, even first-line therapy drugs (non-steroidal anti-inflammatory drugs, tricyclic antidepressants, narcotic analgesics, and anticonvulsants) often fail to provide adequate analgesia. Long-term prescription of narcotic analgesics is at risk of the development of addictive disorders. Surgical interventions have not demonstrated their effectiveness as well. Thus, their use is justified only in the case of ineffective conservative treatment. Poor efficacy of conventional concepts of phantom limb pain treatment led to the use of new means such as botulinum toxin therapy, non-drug methods (psychotherapy, mirror therapy, biological feedback, virtual reality, acupuncture, massage, hypnosis, etc.). Thus, the search for original methods based on the development and introduction of new drug therapy schemes is imperative. A possible solution to this problem is not only creating absolutely new non-opioid analgesics but also using adjuvant therapeutic means in the multimodality schemes of analgesia. The latter promotes neurotransmission in the antinociceptive system and potentiates the effect of traditional analgesics.

About the authors

Sergey V. Kolomentsev

Kirov Military Medical Academy

Email: skolomencev@yandex.ru
ORCID iD: 0000-0002-3756-6214
SPIN-code: 6439-6701

MD, Cand. Sci. (Med.)

Russian Federation, Saint Petersburg

Peter A. Polezhaev

Kirov Military Medical Academy

Author for correspondence.
Email: polezhaev76@gmail.com
ORCID iD: 0009-0009-7771-2229

resident

Russian Federation, Saint Petersburg

Alexei I. Gaivoronsky

Kirov Military Medical Academy

Email: i.v.gaivoronsky@mail.ru
ORCID iD: 0000-0003-1886-5486
SPIN-code: 7011-6279
Scopus Author ID: 57198886709

MD, Dr. Sci. (Med.), professor

Russian Federation, Saint Petersburg

Anna V. Kolomentseva

Kirov Military Medical Academy

Email: antonova401@mail.ru
ORCID iD: 0009-0004-8741-3306

neurologist

Russian Federation, Saint Petersburg

Nikolay V. Tsygan

Kirov Military Medical Academy

Email: 77tn77@gmail.com
ORCID iD: 0000-0002-5881-2242
SPIN-code: 1006-2845
Scopus Author ID: 37066611200
ResearcherId: H-9132-2016

MD, Dr. Sci. (Med.), associate professor

Russian Federation, Saint Petersburg

Igor V. Litvinenko

Kirov Military Medical Academy

Email: litvinenkoiv@rambler.ru
ORCID iD: 0000-0001-8988-3011
SPIN-code: 6112-2792
Scopus Author ID: 35734354000
ResearcherId: F-9120-2013

MD, Dr. Sci. (Med.), professor

Russian Federation, Saint Petersburg

References

  1. Davydov AT, Tyukavin AI, Rezvantsev MV, et al. Phantom pain, role and place of different methods of treatment of the phantom pain syndrome. Reviews on Clinical Pharmacology and Drug Therapy. 2014;12(1):35–58. (In Russ.). doi: 10.17816/RCF12135-58
  2. Kuffler DP. Coping with phantom limb pain. Mol Neurobiol. 2018;55(1):70–84. doi: 10.1007/s12035-017-0718-9
  3. Aternali A, Katz J. Recent advances in understanding and managing phantom limb pain. F1000Research. 2019;8:1167. doi: 10.12688/f1000research.19355.1
  4. Erlenwein J, Diers M, Ernst J, et al. Clinical updates on phantom limb pain. Pain Rep. 2021;6(1):e888. doi: 10.1097/PR9.0000000000000888
  5. Limakatso K, Bedwell GJ, Madden VJ, Parker R. The prevalence and risk factors for phantom limb pain in people with amputations: A systematic review and meta-analysis. PloS one. 2020;15(10):e0240431. doi: 10.1371/journal.pone.0240431
  6. Barnes JA, Eid MA, Creager MA, Goodney PP. Epidemiology and risk of amputation in patients with diabetes mellitus and peripheral artery disease. Arterioscler Thromb Vasc Biol. 2020;40(8):1808–1817. doi: 10.1161/ATVBAHA.120.314595
  7. McDonald CL, Westcott-McCoy S, Weaver MR, et al. Global prevalence of traumatic non-fatal limb amputation. Prosthet Orthot Int. 2021;45(2):105–114. doi: 10.1177/0309364620972258
  8. Weeks SR, Anderson-Barnes VC, Tsao JW. Phantom limb pain: theories and therapies. The neurologist. 2010;16(5):277–286. doi: 10.1097/NRL.0b013e3181edf128
  9. Kaur A, Guan Y. Phantom limb pain: A literature review. Chin J Traumatol. 2018;21(6):366–368. doi: 10.1016/j.cjtee.2018.04.006
  10. Danilov AB, Davydov OS. Neiropaticheskaya bol’. Moscow: Borges, 2007. 192 p. (In Russ.).
  11. Osipova NA, Sobchenko LA. Postamputatsionnyi fantomnyi bolevoi sindrom: meditsinskie i sotsial’nye problemy. Russian Journal of Anesthesiology and Reanimatology. 2011;(6):41–43. (In Russ.).
  12. Modest JM, Raducha JE, Testa EJ, Eberson CP. Management of post-amputation pain. Rhode Island medical journal. 2020;103(4): 19–22.
  13. Rasulić L, Ivanović S, Bascarević V, Simić V. Phantom pain and posttraumatic pain conditions. Acta chirurgica Iugoslavica. 2004;51(4):71–80.
  14. Zhivolupov SA, Samartsev IN, Yakovlev EV. Osnovnye napravleniya v optimizatsii lecheniya bolevykh sindromov u nevrologicheskikh bol’nykh: neyrofiziologicheskiy analiz, topiko-nozologicheskaya interpretatsiya, algoritm formirovaniya bolezn’modifitsiruyushchey kompleksnoy terapii. Consilium Medicum. 2014;16(2):15–23. (In Russ.).
  15. Yam MF, Loh YC, Tan CS, et al. General pathways of pain sensation and the major neurotransmitters involved in pain regulation. Int J Mol Sci. 2018;19(8):2164–2187. doi: 10.3390/ijms19082164
  16. Collins KL, Russell HG, Schumacher PJ, et al. A review of current theories and treatments for phantom limb pain. J Clin Investig. 2018;128(6):2168–2176. doi: 10.1172/JCI94003
  17. Lee GI, Neumeister MW. Pain: pathways and physiology. Clin Plast Surg. 2020;47(2):173–180. doi: 10.1016/j.cps.2019.11.001
  18. Millan MJ. Descending control of pain. Prog Neurobiol. 2002;66(6):355–474. doi: 10.1016/s0301-0082(02)00009-6
  19. Park J, Chung ME. Botulinum toxin for central neuropathic pain. Toxins (Basel). 2018;10(6):224. doi: 10.3390/toxins10060224
  20. Melzack R, Wall PD. Pain mechanisms: a new theory. Science. 1965;150(3699):971–979. doi: 10.1126/science.150.3699.971
  21. Selye H. Stress and the general adaptation syndrome. Br Med J. 1950;1(4667):1383–1392. doi: 10.1136/bmj.1.4667.1383
  22. Melzack R. Pain and the neuromatrix in the brain. J Dent Educ. 2001;65(12):1378–1382. doi: 10.1002/j.0022-0337.2001.65.12.tb03497.x
  23. Ramachandran VS, Hirstein W. The perception of phantom limbs: the D.O. Hebb lecture. Brain. 1998;121(9):1603–1630. doi: 10.1093/brain/121.9.1603
  24. Anokhin PK. Ocherki po fiziologii funktsional’nykh sistem. Moscow: Meditsina, 1975. 448 p. (In Russ.).
  25. Orbeli LA. Izbrannye trudy. Adaptatsionno-troficheskaya funktsiya nervnoi sistemy. Moscow: Akademiya nauk SSSR, 1962. 608 p. (In Russ.).
  26. Kryzhanovskii GN. Generatornye, determinantnye i sistemnye mekhanizmy rasstroistv tsentral’noi nervnoi sistemy. Soviet Neurology and Psychiatry. 1990;90(10):3–10. (In Russ.).
  27. Ukhtomskii AA. Sobranie sochinenii. T. 1. Leningrad: LGU, 1950. 329 p. (In Russ.).
  28. Georgii Nikolaevich Kryzhanovskii. Annals of the Russian academy of medical sciences. 2012;(11):66–67. (In Russ.).
  29. Ossipov MH, Morimura K, Porreca F. Descending pain modulation and chronification of pain. Curr Opin Support Palliat Care. 2014;8(2):143–151. doi: 10.1097/SPC.0000000000000055
  30. Jensen TS, Gottrup H, Sindrup SH, Bach FW. The clinical picture of neuropathic pain. Eur J Pharmacol. 2001;429(1-3):1–11. doi: 10.1016/s0014-2999(01)01302-4
  31. Wang XQ, Mokhtari T, Zeng YX, et al. The distinct functions of dopaminergic receptors on pain modulation: A narrative review. Neural Plast. 2021;2021:6682275. doi: 10.1155/2021/6682275
  32. Obata H. Analgesic mechanisms of antidepressants for neuropathic pain. Int J Mol Sci. 2017;18(11):2483. doi: 10.3390/ijms18112483
  33. Li C, Liu S, Lu X, Tao F. Role of descending dopaminergic pathways in pain modulation. Curr Neuropharmacol. 2019;17(12):1176–1182. doi: 10.2174/1570159X17666190430102531
  34. Liu S, Tang Y, Shu H, et al. Dopamine receptor D2, but not D1, mediates descending dopaminergic pathway-produced analgesic effect in a trigeminal neuropathic pain mouse model. Pain. 2019;160(2):334–344. doi: 10.1097/j.pain.0000000000001414
  35. Lançon K, Qu C, Navratilova E, et al. Decreased dopaminergic inhibition of pyramidal neurons in anterior cingulate cortex maintains chronic neuropathic pain. Cell Rep. 2021;37(9):109933. doi: 10.1016/j.celrep.2021.109933
  36. Ertas M, Sagduyu A, Arac N, et al. Use of levodopa to relieve pain from painful symmetrical diabetic polyneuropathy. Pain. 1998;75 (2-3):257–259. doi: 10.1016/s0304-3959(98)00003-7
  37. Mercado-Reyes J, Almanza A, Segura-Chama P, et al. D2-like receptor agonist synergizes the μ-opioid agonist spinal antinociception in nociceptive, inflammatory and neuropathic models of pain in the rat. Eur J Pharmacol. 2019;853:56–64. doi: 10.1016/j.ejphar.2019.03.020
  38. Rodgers HM, Lim S-A, Yow J, et al. Dopamine D1 or D3 receptor modulators prevent morphine tolerance and reduce opioid withdrawal symptoms. Pharmacol Biochem Behav. 2020;194:172935. doi: 10.1016/j.pbb.2020.172935
  39. Tobaldini G, Reis RA, Sardi NF, et al. Dopaminergic mechanisms in periaqueductal gray-mediated antinociception. Behav Pharmacol. 2018;29(2-3):225–233. doi: 10.1097/FBP.0000000000000346
  40. Kim J-Y, Tillu DV, Quinn TL, et al. Spinal dopaminergic projections control the transition to pathological pain plasticity via a D1/D5-mediated mechanism. J Neurosci. 2015;35(16):6307–6317. doi: 10.1523/JNEUROSCI.3481-14.2015
  41. Igon’kina SI, Grafova VN, Smirnova VS, et al. Ehksperimental’noe issledovanie roli immunologicheskogo faktora v patogeneze nevropaticheskoi boli. Russian Journal of Pain. 2013;(1):10. (In Russ.).
  42. Igon’kina SI, Kukushkin ML, Vetrileh LA, et al. Antitela k neiromediatoram antinotsitseptivnoi sistemy usilivayut i prolongiruyut nevropaticheskuyu bol’. Russian Journal of Pain. 2014;(1):15–16. (In Russ.).
  43. Alviar MJ, Hale T, Dungca M. Pharmacologic interventions for treating phantom limb pain. Cochrane Database Syst Rev. 2016;10(10):CD006380.pub3. doi: 10.1002/14651858.CD006380.pub3
  44. Kremer M, Salvat E, Muller A, et al. Antidepressants and gabapentinoids in neuropathic pain: Mechanistic insights. Neuroscience. 2016;338:183–206. doi: 10.1016/j.neuroscience.2016.06.057
  45. Subedi B, Grossberg GT. Phantom limb pain: mechanisms and treatment approaches. Pain Res Treatment. 2011;2011:864605. doi: 10.1155/2011/864605
  46. Andreeva GO. Khronicheskii bolevoi sindrom pri zabolevaniyakh perifericheskoi nervnoi sistemy [dissertation]. Saint Petersburg; 2015. 282 p. (In Russ.).
  47. Robinson LR, Czerniecki JM, Ehde DM, et al. Trial of amitriptyline for relief of pain in amputees: results of a randomized controlled study. Arch Phys Med Rehabil. 2004;85(1):1–6. doi: 10.1016/s0003-9993(03)00476-3
  48. Bone M, Critchley P, Buggy DJ. Gabapentin in postamputation phantom limb pain: a randomized, double-blind, placebocontrolled, cross-over study. Reg Anesth Pain Med. 2002;27(5):481–486. doi: 10.1053/rapm.2002.35169
  49. Smith D, Ehde D, Hanley M, et al. Efficacy of gabapentin in treating chronic phantom limb and residual limb pain. J Rehabil Res Dev. 2005;42(5):645–654. doi: 10.1682/jrrd.2005.05.0082
  50. Huse E, Larbig W, Flor H, Birbaumer N. The effect of opioids on phantom limb pain and cortical reorganization. Pain. 2001;90 (1-2):47–55. doi: 10.1016/s0304-3959(00)00385-7
  51. Wu CL, Agarwal S, Tella PK, et al. Morphine versus mexiletine for treatment of postamputation pain: a randomized, placebocontrolled, crossover trial. Anesthesiology. 2008;109(2):289–296. doi: 10.1097/ALN.0b013e31817f4523
  52. Eichenberger U, Neff F, Sveticic G, et al. Chronic phantom limb pain: the effects of calcitonin, ketamine, and their combination on pain and sensory thresholds. Anesthesia and Analgesia. 2008;106(4):1265–1273. doi: 10.1213/ane.0b013e3181685014
  53. Neil MJE, Dale MC, Gillespie G. Successful use of Memantine in the treatment of severe phantom limb pain: case report and literature review. Scott Med J. 2010;55(2):58. doi: 10.1258/rsmsmj.55.2.58b
  54. Maier C, Dertwinkel R, Mansourian N, et al. Efficacy of the NMDA-receptor antagonist memantine in patients with chronic phantom limb pain – results of a randomized double-blinded, placebo-controlled trial. Pain. 2003;103(3):277–283. doi: 10.1016/S0304-3959(02)00456-6
  55. Wiech K, Kiefer R-T, Töpfner S, et al. A placebo-controlled randomized crossover trial of the N-methyl-D-aspartic acid receptor antagonist, memantine, in patients with chronic phantom limb pain. Anesthesia and analgesia. 2004;98(2):408–413. doi: 10.1213/01.ANE.0000096002.53818.BD
  56. Abraham RB, Marouani N, Weinbroum AA. Dextromethorphan mitigates phantom pain in cancer amputees. Ann Surg Oncol. 2003;10(3):268–274. doi: 10.1245/aso.2003.08.007
  57. Nikolajsen L, Hansen C, Nielsen J, et al. The effect of ketamine on phantom pain: a central neuropathic disorder maintained by peripheral input. Pain. 1996;67(1):69–77. doi: 10.1016/0304-3959(96)03080-1
  58. Elavarasi A, Goyal V. Botulinum toxin to treat phantom limb pain. Toxicon. 2021;195:17–19. doi: 10.1016/j.toxicon.2021.02.010
  59. Wu H, Sultana R, Taylor KB, Szabo A. Prospective randomized double-blinded pilot study to examine the effect of botulinum toxin type A injection versus Lidocaine/Depomedrol injection on residual and phantom limb pain: initial report. Clin J Pain. 2012;28(2):108–112. doi: 10.1097/AJP.0b013e3182264fe9
  60. Khanna A. Anatomiya spinnomozgovykh nervov i dostupy k nim. Saint Petersburg: Spetslit; 2020. 151 p. (In Russ.).
  61. Zhurbin EA. Vozmozhnosti ul’trazvukovogo issledovaniya pri travmaticheskikh povrezhdeniyakh perifericheskikh nervov konechnostei [dissertation]. Saint Petersburg; 2018. 147 p. (In Russ.).

Copyright (c) 2023 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies