The role of viruses in cell transformation and oncogenesis

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The data of modern scientific literature characterizing individual mechanisms of transformation of normal cells and various stages of oncogenesis associated with viruses were analyzed. The data of sequencing of tumor genomes and amino acid sequences indicate that most tumors are a consequence of the accumulation of sequential mutations, a significant contribution to the formation of which was made by oncogenic viruses. Processes that alter or impair the functioning of signaling pathways can contribute to transformation and oncogenesis. The phosphorylation of the ribosomal protein S6 by protein kinase B, which increases the speed, and prolongs the translation time, is critical in oncogenesis. Protein kinase B inhibits the processes of apoptosis, participates in the regulation of the cell cycle, and regulates tissue growth; an increased level of this protein is found in various tumors. Transformation and tumor-associated processes are the result of a combination of dominant mutations with increased function of proto-oncogenes and recessive mutations with a loss of function of tumor suppressor genes encoding proteins that block cell cycle progression. The function of any gene product can be altered by oncogenic viruses. Transforming proteins alter cell proliferation with a limited set of molecular mechanisms. The integration of proviral deoxyribonucleic acid in a specific region of the cellular genome contributes to the induction of tumor-associated processes by non-transductive viruses. Cellular oncogenes induce signaling at various stages of the cell cycle, which ultimately leads to its dysregulation and progression. In cell transformation, the interaction of E1A viral proteins with tumor suppressors RB, histone acetyltransferase p300/CVR, and inhibitors of cyclin-dependent kinases p27 and p21 is crucial. Virus-transforming proteins have various properties, from changing the sequences of primary amino acids to inducing various variants of biochemical activity. Most tumors induced by non-transductive retroviruses result from increased transcription of cellular genes (myc) located in close proximity to integrated proviruses. Latent membrane protein 1 is an integral protein of the plasma membrane and functions as a constitutively active receptor and facilitates the transition from a latent course of infection to a lytic one. In the absence of a ligand, this protein oligomerizes, and activates proteins that control cell proliferation and survival.

About the authors

Alexander V. Moskalev

Kirov Military Medical Academy

Author for correspondence.
Email: alexmav195223@yandex.ru
ORCID iD: 0000-0002-3403-3850
SPIN-code: 8227-2647

MD, Dr. Sci. (Med.), professor

Russian Federation, Saint Petersburg

Boris Yu. Gumilevsky

Kirov Military Medical Academy

Email: alexmav195223@yandex.ru
SPIN-code: 3428-7704
Scopus Author ID: 6602391269
ResearcherId: J-1841-2017

MD, Dr. Sci. (Med.), professor

Russian Federation, Saint Petersburg

Vasiliy Ya. Apchel

Kirov Military Medical Academy; Herzen State Pedagogical University of Russia

Email: alexmav195223@yandex.ru
ORCID iD: 0000-0001-7658-4856
SPIN-code: 4978-0785
Scopus Author ID: 6507529350
ResearcherId: Е-8190-2019

MD, Dr. Sci. (Med.), professor

Russian Federation, Saint Petersburg; Saint Petersburg

Vasiliy N. Tsygan

Kirov Military Medical Academy

Email: alexmav195223@yandex.ru
ORCID iD: 0000-0003-1199-0911
SPIN-code: 7215-6206

MD, Dr. Sci. (Med.), professor

Russian Federation, Saint Petersburg

References

  1. Griffin DE. The Immune Response in Measles: Virus Control, Clearance and Protective Immunity. Viruses. 2016;10(8):282–291. doi: 10.3390/v8100282
  2. Katze MG, Korth MJ, Law GL, et al. Viral Pathogenesis: From Basics to Systems Biology. San Diego, CA: Academic Press; 2016. 422 p.
  3. Stecca B, Rovida E. Impact of ERK5 on the Hallmarks of Cancer. Int J Mol Sci. 2019;20(6):1426. doi: 10.3390/ijms20061426
  4. Guo Y-J, Pan W-W, Liu S-B, et al. ERK/MAPK signaling pathway and tumorigenesis. Exp Ther Med. 2020;19(3):1997–2007. doi: 10.3892/etm.2020.8454
  5. Lee H-J, Kim M-Y, Park H-S. Phosphorylation-dependent regulation of Notch1 signaling: the fulcrum of Notch1 signaling. BMB Rep. 2015;48(8):431–437. doi: 10.5483/bmbrep.2015.48.8.107
  6. Luoa LY, Hahnb WC. Oncogenic Signaling Adaptor Proteins. J Genet Genomics. 2015;42(10):521–529. doi: 10.1016/j.jgg.2015.09.001
  7. Gong B-L, Mao R-Q, Xiao Y, et al. Improvement of enzyme activity and soluble expression of an alkaline protease isolated from oil-polluted mud flat metagenome by random mutagenesis. Enzyme Microb Technol. 2017;106:97–105. doi: 10.1016/j.enzmictec.2017.06.015
  8. MacDonald BT, He X. Frizzled and LRP5/6 Receptors for Wnt/β-Catenin Signaling. Cold Spring Harb Perspect Biol. 2012;12(4):1–23. doi: 10.1101/cshperspect.a007880
  9. Burrell C, Howard C, Murphy F. Fenner and White’s Medical Virology, 5th ed. San Diego, CA: Academic Press, 2016. 454 p.
  10. Mok YK, Swaminathan K, Zeeshan N. Engineering of serine protease for improved thermostability and catalytic activity using rational design. Int. J. Biol. Macromol. 2019;(26):229–237. doi: 10.1016/j.ijbiomac.2018.12.218
  11. Ashraf NM, Krishnagopal A, Hussain A, et al. Engineering of serine protease for improved thermo stability and catalytic activity using rational design. Int J Biol Macromol. 2019;126:229–237. doi: 10.1016/j.ijbiomac.2018.12.18
  12. Garcia-Sastre A. Ten strategies of interferon evasion by viruses. Cell Host Microbe. 2017;22:176–184. doi: 10.1016/j.chom.2017.07.012
  13. Lee S, Liu H, Wilen CB, et al. A secreted viral nonstructural protein deters intestinal norovirus pathogenesis. Cell Host Microbe. 2019;25(6):845–857.E5. doi: 10.1016/j.chom.2019.04.005845–857
  14. Thapa RJ, Ingram JP, Ragan KB, et al. DAI Senses Influenza A Virus Genomic RNA and Activates RIPK3-Dependent Cell Death. Cell Host Microbe. 2016;20(5):674–681. doi: 10.1016/j.chom.2016.09.014
  15. Ahmad L, Mostowy S, Sancho-Shimizu S. Autophagy-Virus Interplay: From Cell Biology to Human Disease. Front Cell Dev Biol. 2018;6:155. doi: 10.3389/fcell.2018.00155
  16. Yang L, Shi P, Zhao G, et al. Targeting cancer stem cell pathways for cancer therapy. Signal Transduct Target Ther. 2020;5:8. doi: 10.1038/s41392-020-0110-5
  17. Tubita А, Lombardi Z, Tusa I, et al Beyond Kinase Activity: ERK5 Nucleo-cytoplasmic shuttling as a novel target for anticancer therapy. Int J Mol Sci. 2020;21(3):938. doi: 10.3390/ijms21030938
  18. Xu X, Zhang M, Xu F, Jiang S. Wnt signaling in breast cancer: biological mechanisms, challenges and opportunities. Mol Cancer. 2020;19:165. doi: 10.1186/s12943-020-01276-5
  19. Wang B, Li X, Liu L, Wang M. β-Catenin: oncogenic role and therapeutic target in cervical cancer. Biol Res. 2020;53:33. doi: 10.1186/s40659-020-00301-7
  20. Reizis B. Plasmacytoid Dendritic Cells: Development, Regulation, and Function. Immunity. 2019;50(1):37–50. doi: 10.1016/j.immuni.2018.12.027
  21. Takata MA, Gonçalves-Carneiro D, Zang TM, et al. CG dinucleotide suppression enables antiviral defence targeting non-self RNA. Nature. 2017;550(7674):124–127. doi: 10.1038/nature24039
  22. Nash A, Dalziel R, Fitzgerald J. Mims’ Pathogenesis of Infectious Disease, 6th ed. San Diego, CA: Academic Press, 2015. 348 p.
  23. Maillard PV, van der Veen AG, Poirier EZ, e Sousa C.R. Slicing and dicing viruses: antiviral RNA interference in mammals. EMBO J. 2019;38(8):e100941. doi: 10.15252/embj.2018100941
  24. Ma Z, Damania B. The cGAS-STING defense pathway and its counteraction by viruses. Cell Host Microbe. 2016;19(2):150–158. doi: 10.1016/j.chom.2016.01.010
  25. Diner BA, Lum KK, Javitt A, Cristea IM. Interactions of the Antiviral Factor Interferon Gamma-Inducible Protein 16. NIFI16 Mediate Immune Signaling and Herpes Simplex Virus-1 Immunosuppression. Mol Cell Proteomics. 2015;14(9):2341–2356. doi: 10.1074/mcp.M114.047068
  26. van Gent M, Braem SGE, de Jong A, et al. Epstein-Barr virus large tegument protein BPLF1 contributes to innate immune evasion through interference with toll-like receptor signaling. PLoS Pathog. 2014;10(2):e1003960. doi: 10.1371/journal.ppat.1003960
  27. Hemann EA, Green R, Turnbull JB, et al. Interferon-λ modulates dendritic cells to facilitate T cell immunity ion with influenza A virus. Nat Immunol. 2019;20:1035–1045. doi: 10.1038/s41590-019-0408-z
  28. Hadjidj R, Badis A, Mechri S, et al. Purification, biochemical, and molecular characterization of novel protease from Bacillus licheniformis strain K7A. Int J Biol Macromol. 2018;114:1033–1048. doi: 10.1016/j.ijbiomac.2018.03.167
  29. Behzadi P, García-Perdomo HA, Karpiński TM. Toll-Like Receptors: General Molecular and Structural Biology. J Immunol Res. 2021;2021:9914854. doi: 10.1155/2021/9914854
  30. Jeong YJ, Baek SC, Kim H. Cloning and characterization of a novel intracellular serine protease (IspK) from Bacillus megaterium with a potential additive for detergents. Int J Biol Macromol. 2018;108:808–816. doi: 10.1016/j.ijbiomac.2017.10.173

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Signaling pathways contributing to an increase in cell size and mass (according to J. Flint, Vincent R. Racaniello, G. Rall, Th. Hatzoocannon, 2020)

Download (498KB)
3. Fig. 2. The mammalian cyclin-CDK cell cycle engine: а — phases of the cell cycle are indicated on a circle. The progressive accumulation of specific cyclins and cyclin-dependent kinases (CDKs) is represented by expanding arrows that mark the time of abrupt disappearance; b — secretion, accumulation, and biological effects of both cyclins and CDKs are regulated by numerous mechanisms. Green arrows and red bars indicate activating and inhibitory effects, interactions, or post-translational modifications (according to J. Flint, Vincent R. Racaniello, G. Rall, Th. Hatzoocannon, 2020)

Download (272KB)
4. Fig. 3. A model of paracrine oncogenesis caused by products of type 8 HCV gene (according to J. Flint, Vincent R. Racaniello, G. Rall, Th. Hatzoocannon, 2020)

Download (655KB)
5. Fig. 4. Constitutive activation of the cell membrane by Epstein–Barr virus protein 1: а — Summary of transcriptional and other regulators that are stimulated or repressed by signaling from LMP-1; b — LMP-1, which possesses six membrane-spanning segments but no large extracellular domain, oligomerizes in the absence of ligand, a property represented by the LMP-1 dimer depicted. When localized to the plasma membrane, the C-terminal segment of LMP-1 to which cellular proteins bind is sufficient for both activation of cellular transcriptional regulators and immortalization of B cells. The long cytoplasmic C-terminal domain of the viral protein contains three segments implicated in the activation of signaling, designated C-terminal activation regions (CTARs) 1 and 2, and the intervening proline-rich repeats. As shown, multiple members of the tumor necrosis factor receptor-associated protein family (TRAFs) bind to CTAR-1, leading to activation of the protein kinase NIK (NF-KB-inducing kinase) and IkK (Ik-kinase), and ultimately of NF-kB. The CTAR-2 domain of LMP-1 further induced activation of NF-kB via association with TRADD and TRAF-6. Moreover, it is responsible for the activation of AP-1 via the JUN N-terminal kinase pathway. Additionally, the TRAF-binding domain of CTAR-1 induces the activation of the MAP kinase cascade, whereas the proline-rich repeat region is crucial for the activation of JAK3 and STATs. These responses to LMP-1 are required for the transformation of rat fibroblasts. (according to J. Flint, Vincent R. Racaniello, G. Rall, Th. Hatzoocannon, 2020)

Download (904KB)

Copyright (c) 2023 Moskalev A.V., Gumilevsky B.Y., Apchel V.Y., Tsygan V.N.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».