Chronic hepatitis С and non-alcoholic fatty liver disease. Main aspects of pathogenesis


Cite item

Full Text

Abstract

The main pathogenetic aspects of non-alcoholic fatty liver disease as a comorbid factor of chronic hepatitis C are considered. Non-alcoholic fatty liver disease is currently the most common liver disease worldwide, both among adults and children. It is usually accompanied by obesity, insulin resistance and diabetes mellitus. Non-alcoholic fatty liver disease includes a spectrum of pathologies from simple fatty liver infiltration to non-alcoholic steatohepatitis, which is characterized by inflammation with potential progression to fibrosis and cirrhosis over time. On average, non-alcoholic fatty liver disease occurs in 55% of patients with chronic hepatitis C, which is significantly higher than the prevalence of each disease individually. This condition leads to a greater rate of progression of fibrosis, as well as a continuing high risk of developing cirrhosis and hepatocellular carcinoma even after achieving a sustained virological response. In this regard, complex therapy aimed at normalization of the nutritional status, optimization of body weight, correction of impaired intestinal microflora, reduction of severity of liver steatosis and achieving a sustained virological response is a priority task in the treatment of patients with chronic hepatitis C.

About the authors

K V Zhdanov

Военно-медицинская академия им. С.М. Кирова

Email: vmed-2007@yandex.ru
Санкт-Петербург

S S Karyakin

Военно-медицинская академия им. С.М. Кирова

Санкт-Петербург

K V Kozlov

Военно-медицинская академия им. С.М. Кирова

Санкт-Петербург

D A Gusev

Центр по профилактике и борьбе со СПИДом и инфекционными заболеваниями

Санкт-Петербург

V S Sukachev

Военно-медицинская академия им. С.М. Кирова

Санкт-Петербург

A V Saulevich

Военно-медицинская академия им. С.М. Кирова

Санкт-Петербург

M V Yaremenko

Военно-медицинская академия им. С.М. Кирова

Санкт-Петербург

S N Kizhlo

Центр по профилактике и борьбе со СПИДом и инфекционными заболеваниями

Санкт-Петербург

D M Shahmanov

Военно-медицинская академия им. С.М. Кирова

Санкт-Петербург

D Yu Lobzin

Военно-медицинская академия им. С.М. Кирова

Санкт-Петербург

M V Kurtukov

Военно-медицинская академия им. С.М. Кирова

Санкт-Петербург

M A Dzheriev

Военно-медицинская академия им. С.М. Кирова

Санкт-Петербург

References

  1. Жданов, К.В. Гепатит С и неалкогольная жировая болезнь печени у пациентов с ВИЧ-инфекцией / К.В. Жданов, К.В. Козлов, В.С. Сукачев // ВИЧ-инфекция и иммуносупрессии. - 2017. - № 1 (9). - С. 36-42.
  2. Жданов, К.В. Вирусные гепатиты / К.В. Жданов [и др.] - СПб.: Фолиант, 2011. - 304 c.
  3. Жданов, К.В. Водородный дыхательный тест в комплексной диагностике хронических вирусных гепатитов В и С / К.В. Жданов [и др.] // Лечение и профилактика. - 2014. - № 4 (12). - С. 18-26.
  4. Новикова, В.П. Неалкогольная жировая болезнь у детей: учеб- ное пособие для врачей. - СПб.: Информ-Мед, 2013. - 148 c.
  5. Сукачев, В.С. Оценка морфофункционального состояния тонкой кишки у больных хроническим гепатитом С: дис.. канд. мед. наук / В.С. Сукачев. - СПб.: ВМА, 2012. - 106 с.
  6. Abenavoli, L. Insulin resistance and liver steatosis in chronic hepatitis C infection genotype 3 / L. Abenavoli [et al.] // World Journal of Gastroenterology. - 2014. - № 41 (20). - P. 15233-15240.
  7. Adinolfi, L.E. NAFLD and NASH in HCV Infection: Prevalence and Significance in Hepatic and Extrahepatic Manifestations / L.E. Adinolfi [et al.] // International Journal of Molecular Sciences. - 2016. - № 6 (17). - P. 803.
  8. Caligiuri, A. Molecular pathogenesis of NASH / A. Caligiuri, A. Gentilini, F. Marra // International Journal of Molecular Sciences. - 2016. - № 9 (17). - P. 1575.
  9. Csak, T. Both bone marrow-derived and non-bone marrow-derived cells contribute to AIM2 and NLRP3 inflammasome activation in a MyD88-dependent manner in dietary steatohepatitis / T. Csak [et al.] // Liver Int. - 2014. - № 34. - P. 1402-1413.
  10. Day, C.P. Steatohepatitis: A tale of two «hits»? / C.P. Day, O.F. James. // Gastroenterology. - 1998. - № 114. - P. 842-845.
  11. Ding, S. High-fat diet: bacteria interactions promote intestinal inflammation which precedes and correlates with obesity and insulin resistance in mouse / S. Ding [et al.] // PLoS One. - 2010. - № 5 (8). - P. 12191.
  12. Dixon, L.J. Caspase-1 as a central regulator of high fat diet- induced non-alcoholic steatohepatitis / L.J. Dixon [et al.] // PLoS One. - 2013. - № 8. - P. 56100.
  13. Douhara, A. Reduction of endotoxin attenuates liver fibrosis through suppression of hepatic stellate cell activation and remission of intestinal permeability in a rat non-alcoholic steatohepatitis model / A. Douhara [et al.] // Mol. Med. Rep. - 2015. - № 11. - P. 1693-1700.
  14. EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease // J. Hepatol. - 2016. - № 64. - P. 1388-1402.
  15. Fukui, H. Gut-liver axis in liver cirrhosis: How to manage leaky gut and endotoxemia / H. Fukui // World J. Hepatol. - 2015. - № 7. - P. 425-442.
  16. Ganz, M. Immune and inflammatory pathways in NASH / M. Ganz, G. Szabo // Hepatol. Int. - 2013. - № 7. - P. 771-781.
  17. Ganz, M. Progression of non-alcoholic steatosis to steatohepatitis and fibrosis parallels cumulative accumulation of danger signals that promote inflammation and liver tumors in a high fat-cholesterol-sugar diet model in mice / M. Ganz [et al.] // J. Transl. Med. - 2015. - № 13. - P. 193.
  18. Gentile, C.L. The role of fatty acids in the development and progression of non-alcoholic fatty liver disease / C.L. Gentile, M.J. Pagliassotti // J. Nutr. Biochem. - 2008. - № 19. - P. 567-576.
  19. Henao-Mejia, J. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity / J. Henao-Mejia [et al.] // Nature. - 2012. - № 482. - P. 179-185.
  20. Huebener, P. The HMGB1/RAGE axis triggers neutrophil- mediated injury amplification following necrosis / P. Huebener [et al.] // J. Clin. Investig. - 2015. - № 125. - С. 539-550.
  21. Ivanov, A.V. HCV and oxidative stress in the liver / A.V. Ivanov [et al.] // Viruses. - 2013. - № 5. - P. 439-469.
  22. Kapoor, A. Endoplasmic reticulum stress and the unfolded protein response / A. Kapoor, A.J. Sanyal // Clin. Liver Dis. - 2009. - № 13. - P. 581-590.
  23. Kirpich, I.A. Gut-liver axis, nutrition, and non-alcoholic fatty liver disease / I.A. Kirpich, L.S. Marsano, C.J. McClain. // Clinical Biochemistry. - 2015. - № 13 - 14 (48). - P. 923-930.
  24. Liang, T.J. Pathogenesis, natural history, treatment, and prevention of hepatitis / T.J. Liang [et al.] // Am J Gastroenterol. - 2005. - № 100. - P. 1091-1098.
  25. Mehta, S. H. Hepatitis C virus infection and incident type 2 diabetes / S.H. Mehta [et al] // Hepatology. - 2003. - № 38. - P. 50-56.
  26. Minemura, M. Gut microbiota and liver diseases / M. Minemura [et al.] // World J. Gastroenterol. - 2015. - № 21. - P. 1691-1702.
  27. Miura, K. Toll-like receptor 9 promotes steatohepatitis by induction of interleukin-1 in mice / K. Miura [et al.] // Gastroenterology. - 2010. - № 139. - P. 323-334.
  28. Patel, A. Hepatitis C virus infection and nonalcoholic steatohepatitis / A. Patel, S.A. Harrison // Gastroenterology & Hepatology. - 2012. - № 5 (8). - P. 305-312. 220
  29. Prawitt, J. Farnesoid X receptor deficiency improves glucose homeostasis in mouse models of obesity / J. Prawitt [et al.] // Diabetes. - 2011. - № 60. - P. 1861-1871.
  30. Raman, M. Fecal microbiome and volatile organic compound metabolome in obese humans with nonalcoholic fatty liver disease / M. Raman [et al.] // Clin. Gastroenterol. Hepatol. - 2013. - № 11. - P. 868-875
  31. Sabile, A. Hepatitis C virus core protein binds to apolipoprotein AII and its secretion is modulated by fibrates / A. Sabile [et al.] // Hepatology. - 1999. - № 30. - P. 1064-1076.
  32. Shaheen, M. Hepatitis C, metabolic syndrome, and inflammatory markers: results from the third national health and nutrition examination survey [NHANES III] / M. Shaheen [et al.] // Diabetes Res Clin Pract. - 2007. № 75. - P. 320-326.
  33. Shi, S.T. Hepatitis C virus NS5A co-localizes with the core protein on lipid droplets and interacts with apolipoproteins / S.T. Shi [et al.] // Virology. - 2002. - № 292. - P. 198-210.
  34. Shimada, K. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis / K. Shimada [et al.] // Immunity. - 2012. - № 36. - P. 401-414.
  35. Spencer, M.D. Association between composition of the human gastrointestinal microbiome and development of fatty liver with choline deficiency / M.D. Spencer [et al.] // Gastroenterology. - 2011. - № 140. - P. 976-986.
  36. Szabo, G. Inflammasomes in liver diseases / G. Szabo, T. Csak // J. Hepatol. - 2012. - № 57. - P. 642-654.
  37. Tremaroli, V. Functional interactions between the gut microbiota and host metabolism / V. Tremaroli, F. Backhed // Nature. - 2012. - № 489. - P. 242-249.
  38. Vandanmagsar, B. The NLRP3 inflammasome instigates obesity- induced inflammation and insulin resistance / B. Vandanmagsar [et al.] // Nat. Med. - 2011. - № 17. - P. 179-188.
  39. Waris, G. Hepatitis C virus induces proteolytic cleavage of sterol regulatory element binding proteins and stimulates their phosphorylation via oxidative stress / G. Waris [et al.] // J Virol. - 2007. - № 81. - P. 8122-8130.
  40. Williams, C.D. Prevalence of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis among a largely middle-aged population utilizing ultrasound and liver biopsy: a prospective study / C.D. Williams [et al.] // Gastroenterology. - 2011. - № 140. - P. 124-131.
  41. Wree, A. NLRP3 inflammasome activation is required for fibrosis development in NAFLD / A. Wree [et al.] // J. Mol. Med. - 2014. - № 92. - P. 1069-1082.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Zhdanov K.V., Karyakin S.S., Kozlov K.V., Gusev D.A., Sukachev V.S., Saulevich A.V., Yaremenko M.V., Kizhlo S.N., Shahmanov D.M., Lobzin D.Y., Kurtukov M.V., Dzheriev M.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».