TOWARDS THE QUESTION OF «DOSE» MOTOR REHABILITATION AFTER STROKE: REVIEW


Cite item

Full Text

Abstract

According to regulatory documents and published studies, the time in the hospital for rehabilitation after a stroke during one stage is 10-30 hours or more per patient. At the same time, a reliable assessment of the required volume of motor rehabilitation and motor training remains an actual and complex task, which requires special attention of researchers and consensus solutions in order to obtain clear justifications for choosing the type and mode of employment, and to improve the effectiveness of the measures taken.

About the authors

S. S Grokhovsky

Research Centre MERA

115088, Moscow, Russia

Oleg Vitalievich Kubryak

P.K. Anokhin Research Institute of Normal Physiology

Email: o.kubryak@nphys.ru
PhD, DSc, Head of Laboratory of physiology of human functional states, P.K. Anokhin Institute of Normal Physiology, Moscow 125315, Moscow, Russia

References

  1. Belagaje S.R. Stroke rehabilitation. Continuum (Minneap. Minn.). Cerebrovasc. Dis. 2017; 23(1): 238-253.
  2. Дамулин И.В., Екушева Е.В. Клиническое значение феномена нейропластичности при ишемическом инсульте. Анналы клинической и экспериментальной неврологии. 2016; (1): 57-64.
  3. Dimyan M.A., Cohen L.G. Neuroplasticity in the context of motor rehabilitation after stroke. Nat. Rev. Neurol. 2011; 7(2): 76-85.
  4. Stöckel T., Carroll T.J., Summers J.J., Hinder M.R. Motor learning and cross-limb transfer rely upon distinct neural adaptation processes. J. Neurophysiol. 2016; 116(2): 575-86.
  5. Селионов В.А., Солопова И.А., Жванский Д.С. Активация межконечностных связей повышает моторный выход в ногах у здоровых испытуемых: исследование в условиях разгрузки рук и ног. Физиология человека. 2016; 42(1): 52-63.
  6. Кубряк О.В., Ковалева А.В., Горбачева А.К., Гроховский С.С., Бирюкова Е.А., Панова Е.Н. Особенности достижения результата в задаче с биологической обратной связью по опорной реакции при изменении способа исполнения. Материалы XXIII съезда Физиологического общества имени И.П. Павлова. Воронеж; 2017: 298-9.
  7. Lohse K.R., Lang C.E., Boyd L.A. Is more better? Using metadata to explore dose-response relationships in stroke rehabilitation. Stroke. 2014; 45(7): 2053-8.
  8. Московский консенсус по применению стабилометрии и биоуправления по опорной реакции в практическом здравоохранении и исследованиях / НИИ нормальной физиологии им. П.К. Анохина. М.; 2017. http://moscowstabilometryconsensus.ru.
  9. Котов С.В., Бирюкова Е.В., Турбина Л.Г., Кондур А.А., Зайцева Е.В. Динамика восстановления у пациентов с постинсультными двигательными нарушениями при повторных курсах нейрореабилитации с экзосклетом кисти, управляемого интерфейсом «мозг-компьютер». Журнал высшей нервной деятельности им. И.П. Павлова. 2017; 67(4): 445-52.
  10. Ястребцева И.П., Кривоногов В.А. Стабилометрический тренинг с использованием биологической обратной связи различной модальности: анализ результатов. Доктор.Ру. 2018; (1): 16-20.
  11. Черникова Л.А. (ред.) Восстановительная неврология: Инновационные технологии в нейрореабилитации. М.; 2016: 61-122.
  12. Кубряк О.В., Кривошей И.В. Анализ научной области на примере обзора диссертационных работ. Мониторинг общественного мнения: Экономические и социальные перемены. 2016; (6): 52-68.
  13. Союз реабилитологов России. Материалы. Порядок организации медицинской реабилитации. URL: https://rehabrus.ru/materialyi/poryadok-organizaczii-mediczinskoj-reabilitaczii-1705.html.
  14. White Book on physical and rehabilitation medicine in Europe. Eur. J. Phys. Rehab. Med. 2018; 54(2): 177-85.
  15. Guidelines for adult stroke rehabilitation and recovery. A Guideline for healthcare professionals from the American Heart Association/American Stroke Association, 2016. URL: https://www.aan.com/Guidelines/Home/GetGuidelineContent/744.
  16. Nudo R.J. Recovery after brain injury: mechanisms and principles. Front. Hum. Neurosci. 2013; 7: 887.
  17. Darling W.G., Morecraft R.J., Rotella D.L., Pizzimenti M.A., Ge J., Stilwell-Morecraft K.S. et al. Recovery of precision grasping after motor cortex lesion does not require forced use of the impaired hand in Macaca mulatta. Exp. Brain. Res. 2014; 232(12): 3929-38.
  18. Taylor J., Macpherson T., Spears I., Weston M. The effects of repeated-sprint training on field-based fitness measures: a meta-analysis of controlled and non-controlled trials. Sports Med. 2015; 45(6): 881-91.
  19. Peters D.M., McPherson A.K., Fletcher B., McClenaghan B.A., Fritz S.L. Counting repetitions: an observational study of video game play in people with chronic poststroke hemiparesis. J. Neurol. Phys. Ther. 2013; 37(3): 105-11.
  20. Lang C.E., Lohse K.R., Birkenmeier R.L. Dose and timing in neurorehabilitation: prescribing motor therapy after stroke. Curr. Opin. Neurol. 2015; 28(6): 549-55.
  21. Reinkensmeyer D.J., Burdet E., Casadio M., Krakauer J.W., Kwakkel G., Lang C.E. et al. Computational neurorehabilitation: modeling plasticity and learning to predict recovery. J. Neuroeng. Rehabil. 2016; 13(1): 42.
  22. Lohse K.R., Schaefer S.Y., Raikes A.C., Boyd L.A., Lang C.E. Asking new questions with old data: The centralized open-access rehabilitation database for stroke. Front. Neurol. 2016; 7: 153.
  23. Bernhardt J., Borschmann K., Boyd L., Thomas Carmichael S., Corbett D., Cramer S.C. et al. Moving rehabilitation research forward: Developing consensus statements for rehabilitation and recovery research. Int. J. Stroke. 2016; 11(4): 454-8.
  24. Walker M.F., Hoffmann T.C., Brady M.C., Dean C.M., Eng J.J., Farrin A.J. et al. Improving the development, monitoring and reporting of stroke rehabilitation research: Consensus-based core recommendations from the Stroke Recovery and Rehabilitation Roundtable. Int. J. Stroke. 2017; 12(5): 472-9.
  25. Boyd L.A., Hayward K.S., Ward N.S., Stinear C.M., Rosso C., Fisher R.J. et al. Biomarkers of stroke recovery: consensus-based core recommendations from the Stroke Recovery and Rehabilitation Roundtable. Int. J. Stroke. 2017; 12(5): 480-93.
  26. Кубряк О.В., Гроховский С.С., Исакова Е.В., Котов С.В. Биологическая обратная связь по опорной реакции: методология и терапевтические аспекты. М.; 2015.
  27. Кубряк О.В., Панова Е.Н. Определение понятий виртуальной реальности в медицинской реабилитации. Физиотерапия, бальнеология и реабилитация. 2017. 16(2): 70-72.
  28. Corbetta D., Imeri F., Gatti R. Rehabilitation that incorporates virtual reality is more effective than standard rehabilitation for improving walking speed, balance and mobility after stroke: a systematic review. J. Physiother. 2015; 61(3): 117-24.
  29. de Rooij I.J., van de Port I.G., Meijer J.G. Effect of virtual reality training on balance and gait ability in patients with stroke: systematic review and meta-analysis. Phys. Ther. 2016; 96(12): 1905-18.
  30. Chen L., Lo W.L., Mao Y.R., Ding M.H., Lin Q., Li H. et al. Effect of virtual reality on postural and balance control in patients with stroke: a systematic literature review. Biomed. Res. Int. 2016; 2016: 7309272.
  31. Iruthayarajah J., McIntyre A., Cotoi A., Macaluso S., Teasell R. The use of virtual reality for balance among individuals with chronic stroke: a systematic review and meta-analysis. Top Stroke Rehabil. 2017; 24(1): 68-79.
  32. Cheok G., Tan D., Low A., Hewitt J. Is Nintendo Wii an effective intervention for individuals with stroke? A systematic review and meta-analysis. J. Am. Med. Dir. Assoc. 2015; 16(11): 923-32.
  33. Bower K.J., Clark R.A., McGinley J.L., Martin C.L., Miller K.J. Clinical feasibility of the Nintendo Wii™ for balance training post-stroke: a phase II randomized controlled trial in an inpatient setting. Clin. Rehabil. 2014; 28(9): 912-23.
  34. Clark R.A., Pua Y.H., Oliveira C.C., Bower K.J., Thilarajah S., McGaw R. et al. Reliability and concurrent validity of the Microsoft Xbox One Kinect for assessment of standing balance and postural control. Gait Posture. 2015; 42(2): 210-3.
  35. Darekar A., McFadyen B.J., Lamontagne A., Fung J. Efficacy of virtual reality-based intervention on balance and mobility disorders post-stroke: a scoping review. J. Neuroeng. Rehabil. 2015; 12: 46.
  36. Gibbons E.M., Thomson A.N., de Noronha M., Joseph S. Are virtual reality technologies effective in improving lower limb outcomes for patients following stroke - a systematic review with meta-analysis. Top Stroke Rehabil. 2016; 23(6): 440-57.
  37. Снопков П.С., Лядов К.В., Шаповаленко Т.В., Сидякина И.В. Дистанционная реабилитация: истоки, состояние, перспективы. Физиотерапия, бальнеология и реабилитация. 2016. 15(3): 141-5.
  38. Lloréns R., Noé E., Colomer C., Alcañiz M. Effectiveness, usability, and cost-benefit of a virtual reality-based telerehabilitation program for balance recovery after stroke: a randomized controlled trial. Arch. Phys. Med. Rehabil. 2015; 96(3): 418-25.
  39. Squires R.W., Kaminsky L.A., Porcari J.P., Ruff J.E., Savage P.D., Williams M.A. Progression of exercise training in early outpatient cardiac rehabilitation: An official statement from the Аmerican Аssociation of Сardiovascular and Pulmonary Rehabilitation. J. Cardiopulm. Rehabil. Prev. 2018; 38(3): 139-46.
  40. WHO: Rehabilitation 2030: A call for action, 2017. URL: http://www.who.int/disabilities/care/rehab-2030/en.

Copyright (c) 2018 Eco-Vector


 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies