Changes in clinical and functional parameters in patients with vasomotor rhinitis during coblation inferior turbinate reduction combined with physical therapy

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: Vasomotor rhinitis (VR) is one of the most common otorhinolaryngological disorders. Its pronounced clinical manifestations, such as nasal obstruction, cause not only physical discomfort but also psycho-emotional disturbances and social maladaptation, substantially reducing quality of life. The most effective modern treatment for VR is cold plasma surgery (coblation), which destroys the vascular network of the inferior nasal turbinate. The combined use of low-intensity laser therapy (LILT) and transcranial electrical stimulation (TES), which have a pronounced pathogenetic effect, is a promising rehabilitation technology for patients with VR after surgery.

AIM: This study aimed to evaluate the clinical efficacy of combined LILT and TES in the postoperative period following cold plasma surgery in patients with VR.

METHODS: A prospective, randomized, controlled, comparative study was conducted in 137 patients with VR who were randomly assigned to four groups. Group 1 (control, n = 34) received basic therapy (BT) alone. Group 2 (comparison 1, n = 35) underwent a course of LILT in addition to BT. Group 3 (comparison 2, n= 34) received TES in addition to BT. Group 4 (main group, n = 34) received both LILT and TES alongside BT. The efficacy of physical therapy in the postoperative period was assessed by changes in complaints, reactive inflammation, anterior active rhinomanometry parameters, and SNOT-22 score.

RESULTS: Additional physical therapy reduced the incidence of complaints in patients with VR, with the greatest improvement observed in the main group. Changes in objective parameters corroborated the changes in subjective VR symptoms. The combined use of LILT and TES resulted in the greatest improvement in anterior active rhinomanometry parameters and mucociliary transport time. Physical therapy had a positive effect on reactive postoperative inflammation of the nasal mucosa, with the greatest improvement achieved in the main group.

CONCLUSIONS: The adjunctive use of LILT and TES accelerates the regression of clinical signs of VR and improves objective functional parameters of the nasal mucosa in the postoperative period. Combination physical therapy results in a significant reduction in clinical signs and a maximum improvement in quality of life.

About the authors

Svetlana A. Belkina

Clinical Hospital No. 1, Moscow

Email: doctor_belkina@mail.ru
ORCID iD: 0009-0000-9498-6031
Russian Federation, Moscow

Tatiana G. Pelishenko

Clinical Hospital No. 1, Moscow

Email: doctor217@mail.ru
ORCID iD: 0000-0001-6597-2167
SPIN-code: 4176-8850

MD, Cand. Sci. (Medicine)

Russian Federation, Moscow

Sergey N. Nagornev

Russian Scientific Center of Surgery named after academician B.V. Petrovsky

Author for correspondence.
Email: drnag@mail.ru
ORCID iD: 0000-0002-1190-1440
SPIN-code: 2099-3854

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Moscow

References

  1. Bhargava D, Bhargava K, Al-Abri A, Al-Bassam W, Al-Abri R. Non allergic rhinitis: prevalence, clinical profile and knowledge gaps in literature. Oman Med J. 2011;26(6):416–20. doi: 10.5001/omj.2011.106
  2. Lopatin AS. Treatment of vasomotor rhinitis: international trends and Russian practice. Medical Council. 2012;(11):83–87. EDN: PUIREP
  3. Arefieva NA, Vishnyakov VV, Karpishchenko SA, et al. Vasomotor rhinitis: pathogenesis, diagnostics and principles of treatment (clinical guidelines). Moscow; 2014:25. EDN: SBUFCA
  4. Wheeler PW, Wheeler SF. Vasomotor rhinitis. Am Fam Physician. 2005;72(6):1057–1062.
  5. Avdeeva KS, Fokkens WJ, Segboer CL, Reitsma S. The prevalence of non-allergic rhinitis phenotypes in the general population: A cross-sectional study. Allergy. 2022;77(7):2163–2174. doi: 10.1111/all.15223 EDN: UDJSMZ
  6. Baroody FM, Gevaert P, Smith PK, et al. Nonallergic Rhinopathy: A Comprehensive Review of Classification, Diagnosis, and Treatment. J Allergy Clin Immunol Pract. 2024;12(6):1436–1447. doi: 10.1016/j.jaip.2024.03.009
  7. Desai V, Sampieri G, Namavarian A, Lee JM. Cryoablation for the treatment of chronic rhinitis: a systematic review. J Otolaryngol Head Neck Surg. 2023;52(1):37. doi: 10.1186/s40463-023-00645-6
  8. Lopatin AS. Rhinitis: a guide for doctors. Moscow: Litterra; 2010:432.
  9. Ivanov NI, Zakharova GP, Shabalin VV. Laser correction of the inferior nasal turbinates in increasing the effectiveness of surgical treatment of patients with vasomotor rhinitis. Bulletin of otolaryngology. 2024;89(3):89–90. EDN: UYIPTI
  10. Craig JR, Mason W, Laumet G, et al. Sensory and Autonomic Fibers in Anterior Ethmoid, Posterior Nasal, Posterolateral Nasal Nerves. Laryngoscope. 2025;135(8):2702–2712. doi: 10.1002/lary.32164
  11. Dykewicz MS, Wallace DV, Amrol DJ, et al. Rhinitis 2020: A practice parameter update. J Allergy Clin Immunol. 2020;146(4):721–767. doi: 10.1016/j.jaci.2020.07.007
  12. Litvitsky PF. Disorders of regional blood flow and microcirculation. Regional blood circulation and microcirculation. 2020;19(1):82–92. doi: 10.24884/1682-6655-2020-19-1-82-92 EDN: NNGGVH
  13. Berest IE. Halotherapy in patients with vasomotor rhinitis after surgical treatment. Issues of balneology, physiotherapy and therapeutic physical culture. 2020;97(4):31–36. doi: 10.17116/kurort20209704131 EDN: AKSWGP
  14. Tsarapkin GYu, Kravchuk AP, Ogorodnikov DS. Modern methods of surgical treatment of hypertrophic and vasomotor rhinitis. Russian Rhinology. 2021;29(1):31–36. doi: 10.17116/rosrino20212901131 EDN: JSJRQK
  15. Artemyeva-Karelova AV. Surgical treatment of vasomotor rhinitis taking into account the anatomical features of the nasal turbinate mucosa. Russian Otolaryngology. 2018;(1):16–20. EDN: YMBSXR
  16. Krivopalov AA, Ryazantsev SV, Ivanov NI, Zakharova GP Advantages of laser surgery in rhinology. Russian Rhinology. 2022;30(4):276–281. doi: 10.17116/rosrino202230041276 EDN: GCIEEU
  17. Skorokhod AA, Tupikin DV Traditional and innovative methods in otolaryngology. Modern Science. 2020;(2–2):238–242. EDN: GQEIXT
  18. Abdullah B, Singh S. Surgical Interventions for Inferior Turbinate Hypertrophy: A Comprehensive Review of Current Techniques and Technologies. Int J Environ Res Public Health. 2021;18(7):3441. doi: 10.3390/ijerph18073441
  19. Passali D, Loglisci M, Politi L, et al. Managing turbinate hypertrophy: coblation vs. radiofrequency treatment. Eur Arch Otorhinolaryngol. 2016;273(6):1449–53. doi: 10.1007/s00405-015-3759-6
  20. Svistushkin VM, Starostina SV, Toldanov AV. Possibilities of coblation in otorhinolaryngology: analytical review. Eur Arch Otorhinolaryngol. 2022;279(4):1655–1662.
  21. Albazee E, Al-Sebeih KH, Alkhaldi F, et al. Coblation tonsillectomy versus laser tonsillectomy: a systematic review and meta-analysis of randomized controlled trials. Eur Arch Otorhinolaryngol. 2022;279(12):5511–5520. doi: 10.1007/s00405-022-07534-0
  22. Starodubov VI, Razumov AN, Ponomarenko GN. Formation and development of restorative medicine in Russia: the role of the Russian Academy of Sciences. Issues of balneology, physiotherapy and therapeutic physical culture. 2024;101(5):5–12. doi: 10.17116/kurort20241010515 EDN: GULPZG
  23. Ponomarenko GN. Restorative medicine: fundamental principles and development prospects. Physical and Rehabilitation Medicine. 2022;4(1):8–20. doi: 10.26211/2658-4522-2022-4-1-8-20 EDN: IUWDXK
  24. Volkovskaya AN, Zhaburina MV, Borzov EV Efficiency of low-intensity laser therapy in rhinosurgical patients. Chief Physician. 2022;11:47–50. doi: 10.33920/med-03-2211-06 EDN: GURIAG
  25. Naumenko AN, Shustova TI, Naumenko NN, et al. Functional state of the autonomic nervous system in patients with upper respiratory tract pathology in the pre- and postoperative periods. Russian Otolaryngology. 2008;(6):91–94. EDN: MGSXAF
  26. Shustova TI, Naumenko AN. Transcranial electrical stimulation in the treatment of patients with ENT pathology. Current issues in modern natural science. 2008;(6):85–89.
  27. Ryabova MA, Ulupov MYu, Shumilova NA, et al. Possibilities of gentle surgical treatment of vasomotor rhinitis in the elderly. Folia Otorhinolaryngologiae et Pathologiae Respiratoriae. 2020;26(4):50–58. doi: 10.33848/foliorl23103825-2020-26-4-50-58 EDN: BLEEVM
  28. Shabalin VV, Zakharova GP, Ivanov NI. Modern approaches to assessing the motor activity of cilia of the upper respiratory tract epithelium. Russian Otolaryngology. 2022;21(6):103–109. doi: 10.18692/1810-4800-2022-6-103-109 EDN: UITLUN
  29. Kolesnikov VN, Fomicheva EV. Use of anterior active rhinomanometry for the diagnosis of vasomotor rhinitis. Trends in the development of science and education. 2016;(12–1):31–34. doi: 10.18411/lj2016-3-17 EDN: VVHSDT
  30. Yücel H, Eşmen SE. Evaluation of nasal mucociliary clearance by saccharine test in rheumatoid arthritis. Braz J Otorhinolaryngol. 2022;88 Suppl 5(Suppl 5):S42–S46. doi: 10.1016/j.bjorl.2021.08.005
  31. Kulyakin EV. Evaluation of the quality of life of patients with postnasal drip in vasomotor rhinitis before and after surgical treatment. Medical Journal. 2022;3(81):88–93. doi: 10.51922/1818-426X.2022.3.88 EDN: TBWLVN
  32. Bachmann W. Clinical functional diagnosis of obstructed nasal respiration. HNO. 1983;31(9):320–326.
  33. Smirnova OV, Goncharova NS. The influence of the lipid peroxidation-antioxidant protection system indicators on the quality of life of patients with chronic rhinitis of different phenotypes. Bulletin of respiratory physiology and pathology. 2024;92:77–84. doi: 10.36604/1998-5029-2024-92-77-84 EDN: HIVNKX
  34. Moskvin SV. Fundamentals of laser therapy. Series “Effective laser therapy”. Vol. 1. Moscow–Tver: Izdatelstvo" Triada; 2016:896.
  35. Moskvin SV, Khadartsev AA. Methods of effective laser therapy in the treatment of patients with bronchial asthma (literature review). Bulletin of new medical technologies. Electronic publication. 2019;5:117–148. doi: 10.24411/2075-4094-2019-16522 EDN: YDCXCF
  36. Krechina EK, Shidova AV, Moskvin SV. Comparative analysis of the effectiveness of low-intensity pulsed and continuous laser radiation of the red and infrared spectrum ranges on microcirculation in patients with chronic periodontitis. Bulletin of new medical technologies. 2008;15(1):162–166. EDN: LABKSJ
  37. Nechipurenko NI, Prokopenko TA, Pashkovskaya ID The main mechanisms of action and biological effects of low-intensity laser radiation. News of medical and biological sciences. 2021;21(4):200–207. EDN: HMDPLR
  38. Gilyalov MN, Ismagilov Sh.M. Functional disorders of the autonomic nervous system in pathology of the nose and paranasal sinuses. Bulletin of otolaryngology. 2015;89(4):18–21. EDN: UJXJBH
  39. Yurkov AYu, Shustova TI Study of the neurovegetative component of the pathogenesis of ENT diseases in the St. Petersburg Research Institute of Ear, Throat, Nose and Speech. Russian Otolaryngology. 2012;(6):168–174. EDN: PMYRFV
  40. Karkusova MD Biological effects of serotonin (review article). Bulletin of new medical technologies (Electronic publication). 2022;16(6):133–139. doi: 10.24412/2075-4094-2022-6-3-12 EDN: GCJVIO.
  41. Bardoni R. Serotonergic 5-HT7 Receptors as Modulators of the Nociceptive System. Curr Neuropharmacol. 2023;21(7):1548–1557.
  42. Coffeen U, Ramírez-Rodríguez GB, Simón-Arceo K, et al. The Role of the Insular Cortex and Serotonergic System in the Modulation of Long-Lasting Nociception. Cells. 2024;13(20):1718. doi: 10.3390/cells13201718
  43. Lopatin AS, Varvyanskaya AV. Vasomotor rhinitis: pathogenesis, clinical features, diagnostics and possibilities of conservative treatment. Atmosphere. Pulmonology and Allergology. 2007;(2):33–38. EDN: OOZAYH
  44. Lal D, Corey JP. Vasomotor rhinitis update. Curr Opin Otolaryngol Head Neck Surg. 2004;12(3):243–247. doi: 10.1097/01.moo.0000122310.13359.79
  45. Stepanov EN. The role of impaired microcirculation of the nasal mucosa in the pathogenesis of various forms of chronic rhinitis. Practical Medicine. 2011;(3–1):11–14. EDN: NUSAKN
  46. Shustova TI, Naumenko AN. Transcranial electrical stimulation in the treatment of patients with ENT pathology. Actual issues of modern natural science. 2008;(6):85–89.
  47. Naumenko AN. Transcranial electrical stimulation in postoperative treatment of patients with nasal cavity pathology: diss. … candidate of medical sciences. St. Petersburg; 2009:82. EDN: NKVQBX
  48. Lebedev VP, Sergienko VI. Transcranial electrical stimulation as an activator of reparative regeneration: from experiment to clinic. Transcranial electrical stimulation: experimental and clinical studies. Vol. 2. St. Petersburg; 2005:293–301.
  49. Wang Y, Gupta M, Poonawala T, et al. Opioids and opioid receptors orchestrate wound repair. Transl Res. 2017;185:13–23. doi: 10.1016/j.trsl.2017.05.003
  50. Evdokimova NV, Trukhmanov MS. Transcranial electrical stimulation in pediatrics: modern concepts (scientific review). Preventive and clinical medicine. 2022;(3):65–71. doi: 10.47843/2074-9120_2022_3_65 EDN: KHFTIH
  51. Tarasova DN, Skvortsov VV, Levitan BN. Transcranial electrical stimulation in the treatment of gastric ulcer and duodenal ulcer. Attending physician. 2024;27(2):21–24. doi: 10.51793/OS.2024.27.2.004 EDN: FTHASA
  52. Orekhova EM, Konchugova TV, Kulchitskaya DB, et al. Modern approaches to the use of transcerebral magnetic therapy for arterial hypertension. Issues of balneology, physiotherapy and therapeutic physical culture. 2016;93(3):53–55. doi: 10.17116/kurort2016353-55 EDN: VZLSJF
  53. Korchazhkina NB, Khan MA, Chervinskaya AV, et al. Combined methods of halotherapy in medical rehabilitation of children with respiratory diseases. Bulletin of restorative medicine. 2018;(3):58–62. EDN: XTAUFF
  54. Korchazhkina NB, Rzhevsky VS. Application of physiotherapy methods in the early rehabilitation period after surgery in patients with inflammatory diseases of the maxillofacial region. Surgery. Journal named after N.I. Pirogov. 2022;(2):5–10. doi: 10.17116/hirurgia20220215 EDN: AZRGCG
  55. Ulashchik VS. Combined physiotherapy: general information, interaction of physical factors. Issues of balneology, physiotherapy and therapeutic physical culture. 2016;93(6):4–11. doi: 10.17116/kurort201664-11 EDN: XHUGKX
  56. Bykov EV, Makunina OA, Kharina IF. Modern scientific and methodological approaches to the assessment of psychophysiological functional states. Scientific and Sports Journal. 2023;1(1):5–15. EDN: FPLEIK

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».