The role of macroelements in the development and progression of a new coronavirus infection (literature review)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The article provides a brief overview of the data on the effect of changes in the content of the main macronutrients (sodium, calcium, potassium and magnesium) on the incidence and course of COVID-19. The features of imbalance of mineral substances in patients with new coronavirus infection were analyzed, the role of electrolyte disturbances in increasing the incidence of complications and increasing mortality among patients with COVID-19 was demonstrated. Possible mechanisms of macronutrient imbalance arising from infection with SARS-CoV-2 are described.

The search for publications on changes in the content of magnesium, potassium, calcium and sodium in patients with COVID-19, as well as their impact on the development and progression of the disease, was carried out using the Web of Science, Scopus, MedLine, The Cochrane Library, Embase, Global Health, CyberLeninka, RSCI databases. In addition, publications from journals peer-reviewed by the Higher Attestation Commission, as well as international and regional journals were analyzed.

About the authors

Alexei O. Romanov

A.I. Yevdokimov Moscow State University of Medicine and Dentistry

Email: terekhova_m@mail.ru
ORCID iD: 0000-0002-5085-4587
SPIN-code: 2974-7992
Russian Federation, Moscow

Maisiyat M. Sharipova

A.I. Yevdokimov Moscow State University of Medicine and Dentistry

Email: terekhova_m@mail.ru
ORCID iD: 0000-0001-7452-1122
SPIN-code: 8438-6386

MD, Cand. Sci. (Med.)

Russian Federation, Moscow

Maria V. Ivkina

A.I. Yevdokimov Moscow State University of Medicine and Dentistry

Author for correspondence.
Email: terekhova_m@mail.ru
ORCID iD: 0000-0001-5261-3552
SPIN-code: 7054-2171

MD, Cand. Sci. (Med.)

Russian Federation, Moscow

Anna N. Arkhangelskaya

A.I. Yevdokimov Moscow State University of Medicine and Dentistry

Email: terekhova_m@mail.ru
ORCID iD: 0000-0002-0792-6194
SPIN-code: 4434-5712

MD, Cand. Sci. (Med.), Аssociate Рrofessor

Russian Federation, Moscow

Konstantin G. Gurevich

A.I. Yevdokimov Moscow State University of Medicine and Dentistry

Email: terekhova_m@mail.ru
ORCID iD: 0000-0002-7603-6064
SPIN-code: 4344-3045

MD, Dr. Sci. (Med.)

Russian Federation, Moscow

References

  1. Rylova NV, Troegubova NA, Zholinskiy AV, et al. Assessment of the mineral status in young athletes. Russ Bulletin Perinatol Pediatrics. 2017;62(5):175–183. (In Russ). doi: 10.21508/1027-4065-2017-62-5-175-183
  2. Galmés S, Serra F, Palou A. Current state of evidence: influence of nutritional and nutrigenetic factors on immunity in the COVID-19 pandemic framework. Nutrients. 2020;12(9):2738. doi: 10.3390/nu12092738
  3. Wessels I, Rolles B, Slusarenko A, Rink L. Zinc deficiency as a possible risk factor for increased susceptibility and severe progression of Corona Virus Disease 19. Br J Nutrition. 2021;127(2):214–232. doi: 10.1017/S0007114521000738
  4. Vogel-González M, Talló-Parra M, Herrera-Fernández V, et al. Low zinc levels at admission associates with poor clinical outcomes in SARS-CoV-2 Infection. Nutrients. 2021;13(2):562. doi: 10.3390/nu13020562
  5. Im JH, Je YS, Baek J, et al. Nutritional status of patients with COVID-19. Int J Infect Dis. 2020;(100):390–393. doi: 10.1016/j.ijid.2020.08.018
  6. Heller RA, Sun Q, Hackler J, et al. Prediction of survival odds in COVID-19 by zinc, age and selenoprotein P as composite biomarker. Redox Biol. 2021;(38):101764. doi: 10.1016/j.redox.2020.101764
  7. Zhao K, Huang J, Dai D, et al. Serum iron level as a potential predictor of coronavirus disease 2019 severity and mortality: a retrospective study. Open Forum Infect Dis. 2020;7(7):ofaa250. doi: 10.1093/ofid/ofaa250
  8. Pincemail J, Cavalier E, Charlier C, et al. Oxidative stress status in COVID-19 Patients hospitalized in intensive care unit for severe pneumonia. A Pilot Study Antioxidants (Basel). 2021;10(2):257. doi: 10.3390/antiox10020257
  9. Lippi G, South AM, Henry BM. Electrolyte imbalances in patients with severe coronavirus disease 2019 (COVID-19). Ann Clin Biochem. 2020;57(3):262–265. doi: 10.1177/0004563220922255
  10. Samad N, Sodunke TE, Abubakar AR, et al. The implications of zinc therapy in combating the COVID-19 global pandemic. J Inflamm Res. 2021;(14):527–550. doi: 10.2147/JIR.S295377
  11. Perera M, El Khoury J, Chinni V, et al. Randomised controlled trial for high-dose intravenous zinc as adjunctive therapy in SARS-CoV-2 (COVID-19) positive critically ill patients: trial protocol. BMJ Open. 2020;10(12):e040580. doi: 10.1136/bmjopen-2020-040580
  12. Doboszewska U, Wlaź P, Nowak G, Młyniec K. Targeting zinc metalloenzymes in coronavirus disease 2019. Br J Pharmacol. 2020;177(21):4887–4898. doi: 10.1111/bph.15199
  13. Notz Q, Herrmann J, Schlesinger T, et al. Clinical significance of micronutrient supplementation in critically Ill COVID-19 patients with severe ARDS. Nutrients. 2021;13(6):2113. doi: 10.3390/nu13062113
  14. Tan CW, Ho LP, Kalimuddin S, et al. Cohort study to evaluate the effect of vitamin D, magnesium, and vitamin B12 in combination on progression to severe outcomes in older patients with coronavirus (COVID-19). Nutrition. 2020;(79-80):111017. doi: 10.1016/j.nut.2020.111017
  15. Leung C. Clinical features of deaths in the novel coronavirus epidemic in China. Rev Med Virol. 2020;30(3):e2103. doi: 10.1002/rmv.2103
  16. Wu D, Wu T, Liu Q, Yang Z. The SARS-CoV-2 outbreak: what we know. Int J Infect Dis. 2020;94:44–48. doi: 10.1016/j.ijid.2020.03.004
  17. Weston S, Frieman MB. COVID-19: knowns, unknowns, and questions. mSphere. 2020;5(2):e00203–00220. doi: 10.1128/mSphere.00203-20
  18. Rahman MT, Idid SZ. Can Zn be a critical element in COVID-19 treatment? Biol Trace Elem Res. 2021;199(2):550–558. doi: 10.1007/s12011-020-02194-9
  19. Lake MA. What we know so far: COVID-19 current clinical knowledge and research. Clin Med (Lond.) 2020;20(2):124–127. doi: 10.7861/clinmed.2019-coron
  20. Rothan HA, Byrareddy SN. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J Autoimmun. 2020;109:102433. doi: 10.1016/j.jaut.2020.102433
  21. Nedjimi B. Can trace element supplementations (Cu, Se, and Zn) enhance human immunity against COVID-19 and its new variants? Beni Suef Univ J Basic Appl Sci. 2021;10(1):33. doi: 10.1186/s43088-021-00123-w
  22. Gromova OA, Torshin IY. The importance of zinc for maintaining the activity of proteins of innate antiviral immunity: analysis of publications on COVID-19. Preventive Med. 2020;23(3):131–139. (In Russ). doi: 10.17116/profmed202023031131
  23. Chaturvedi UC, Shrivastava R, Upreti RK. Viral infections and trace elements: a complex interaction. Cur Sci. 2004;87(10):1536–1554.
  24. Calder PC. Nutrition, immunity and COVID-19. BMJ Nutr Prev Health. 2020;3(1):74–92. doi: 10.1136/bmjnph-2020-000085
  25. Dharmalingam K, Birdi A, Tomo S, et al. Trace elements as immunoregulators in SARS-CoV-2 and other viral infections. Indian J Clin Biochem. 2021;36(4):416–426. doi: 10.1007/s12291-021-00961-6
  26. Skalny AV, Rink L, Ajsuvakova OP, et al. Zinc and respiratory tract infections: perspectives for COVID-19 (Review). Int J Mol Med. 2020;46(1):17–26. doi: 10.3892/ijmm.2020.4575
  27. Tang CF, Ding H, Jiao RQ, et al. Possibility of magnesium supplementation for supportive treatment in patients with COVID-19. Eur J Pharmacol. 2020;886:173546. doi: 10.1016/j.ejphar.2020.173546
  28. Jeong IK, Yoon KH, Lee MK. Diabetes and COVID-19: global and regional perspectives. Diabetes Res Clin Pract. 2020;166:108303. doi: 10.1016/j.diabres.2020.108303
  29. Fernández-Cao JC, Warthon-Medina M, Moran V, et al. Zinc intake and status and risk of type 2 diabetes mellitus: a systematic review and meta-analysis. Nutrients. 2019;11(5):1027. doi: 10.3390/nu11051027
  30. Dubey P, Thakur V, Chattopadhyay M. Role of minerals and trace elements in diabetes and insulin resistance. Nutrients. 2020;12(6):1864. doi: 10.3390/nu12061864
  31. Gromova OA, Torshin IY, Kalacheva AG. Magnesium subsidies to increase the reserve of adaptation and stress resistance of the body during a pandemic. RMZh. 2020. (In Russ). Available from: https://www.rmj.ru/articles/infektsionnye_bolezni/dotatsii-magniya-dlya-povysheniya-rezerva-adaptatsii-i-stressoustoychivosti-organizma-v-period-pandemii/#ixzz79qOfPGI1. Accessed: 15.12.2021.
  32. Mathew AA, Panonnummal R. ‘Magnesium’-the master cation-as a drug-possibilities and evidences. Biometals. 2021;34(5):955–986. doi: 10.1007/s10534-021-00328-7
  33. Tezcan ME, Dogan Gokce G, Sen N, et al. Baseline electrolyte abnormalities would be related to poor prognosis in hospitalized coronavirus disease 2019 patients. New Microbes New Infect. 2020;37:100753. doi: 10.1016/j.nmni.2020.100753
  34. Kumar P, Kumar M, Bedi O, et al. Role of vitamins and minerals as immunity boosters in COVID-19. Inflammopharmacology. 2021;29(4):1001–1016. doi: 10.1007/s10787-021-00826-7
  35. Houillier P. Sodium homeostasis. (In French). Nephrol Ther. 2007;3(Suppl 2):S91–93. doi: 10.1016/s1769-7255(07)80014-9
  36. Voets PJ, Vogtländer NP, Kaasjager KA. Understanding dysnatremia. J Clin Monit Comput. 2021;35(3):655–659. doi: 10.1007/s10877-020-00512-z
  37. Ruiz-Sánchez JG, Núñez-Gil IJ, Cuesta M, et al. Prognostic impact of hyponatremia and hypernatremia in COVID-19 pneumonia. A HOPE-COVID-19 (Health Outcome Predictive Evaluation for COVID-19) registry analysis. Front Endocrinol (Lausanne). 2020;11:599255. doi: 10.3389/fendo.2020.599255
  38. Hu W, Lv X, Li C, et al. Disorders of sodium balance and its clinical implications in COVID-19 patients: a multicenter retrospective study. Intern Emerg Med. 2021;16(4):853–862. doi: 10.1007/s11739-020-02515-9
  39. Aggarwal S, Garcia-Telles N, Aggarwal G, et al. Clinical features, laboratory characteristics, and outcomes of patients hospitalized with coronavirus disease 2019 (COVID-19): early report from the United States. Diagnosis (Berl). 2020;7(2):91–96. doi: 10.1515/dx-2020-0046
  40. De Carvalho H, Letellier T, Karakachoff M, et al. Hyponatremia is associated with poor outcome in COVID-19. J Nephrology. 2021;34(4):991–998. doi: 10.1007/s40620-021-01036-8
  41. Berni A, Malandrino D, Parenti G, et al. Hyponatremia, IL-6, and SARS-CoV-2 (COVID-19) infection: may all fit together? J Endocrinol Invest. 2020;43(8):1137–1139. doi: 10.1007/s40618-020-01301-w
  42. Zimmer MA, Zink AK, Weißer CW, et al. Hypernatremia-A manifestation of COVID-19: a case series. Pract. 2020;14(9):e01295. doi: 10.1213/XAA.0000000000001295
  43. Post A, Dullaart RP, Bakker SJ. Is low sodium intake a risk factor for severe and fatal COVID-19 infection? Eur J Intern Med. 2020;75:109. doi: 10.1016/j.ejim.2020.04.003
  44. Gheorghe G, Ilie M, Bungau S, et al. Is There a relationship between COVID-19 and hyponatremia? Medicina (Kaunas). 2021;57(1):55. doi: 10.3390/medicina57010055
  45. Crespi B, Alcock J. Conflicts over calcium and the treatment of COVID-19. Evol Med Public Health. 2020;9(1):149–156. doi: 10.1093/emph/eoaa046
  46. Sun JK, Zhang WH, Zou L, et al. Serum calcium as a biomarker of clinical severity and prognosis in patients with coronavirus disease 2019. Aging (Albany NY). 2020;12(12):11287–11295. doi: 10.18632/aging.103526
  47. Elham AS, Azam K, Azam J, et al. Serum vitamin D, calcium, and zinc levels in patients with COVID-19. Clin Nutr ESPEN. 2021;43:276–282. doi: 10.1016/j.clnesp.2021.03.040
  48. Zhou X, Chen D, Wang L, et al. Low serum calcium: a new, important indicator of COVID-19 patients from mild/moderate to severe/critical. Biosci Rep. 2020;40(12):BSR20202690. doi: 10.1042/BSR20202690
  49. Skalny AV, Timashev PS, Aschner M, et al. Serum zinc, copper, and other biometals are associated with COVID-19 severity markers. Metabolites. 2021;11(4):244. doi: 10.3390/metabo11040244
  50. Liu J, Han P, Wu J, et al. Prevalence and predictive value of hypocalcemia in severe COVID-19 patients. J Infect Public Health. 2020;13(9):1224–1228. doi: 10.1016/j.jiph.2020.05.029
  51. Pal R, Ram S, Zohmangaihi D, et al. High prevalence of hypocalcemia in non-severe COVID-19 patients: a retrospective case-control study. Front Med (Lausanne). 2021;7:590805. doi: 10.3389/fmed.2020.590805
  52. Noori M, Nejadghaderi SA, Sullman MJ, et al. Epidemiology, prognosis and management of potassium disorders in COVID-19. Rev Med Virol. 2021;32(1):e2262. doi: 10.1002/rmv.2262
  53. Nasomsong W, Ungthammakhun C, Phiboonbanakit D, et al. Low serum potassium among patients with COVID-19 in Bangkok, Thailand: coincidence or clinically relevant? Trop Doct. 2021;51(2):212–215. doi: 10.1177/0049475520978174
  54. Tsiberkin AI, Klyaus NA, Sazonova YV, Semenov AP. Hypokalemia in hospitalized patients with pneumonia on the background of COVID-19. Arterial Hypertension. 2020;26(4):462–467. (In Russ). doi: 10.18705/1607-419X-2020-26-4-462-467
  55. Alfano G, Ferrari A, Fontana F, et al. Hypokalemia in patients with COVID-19. Clin Exp Nephrol. 2021;25(4):401–409. doi: 10.1007/s10157-020-01996-4
  56. Chen D, Li X, Song Q, et al. Assessment of hypokalemia and clinical characteristics in patients with coronavirus disease 2019 in Wenzhou, China. JAMA Netw Open. 2020;3(6):e2011122. doi: 10.1001/jamanetworkopen.2020.11122
  57. Moreno PO, Leon-Ramirez JM, Fuertes-Kenneally L, et al. Hypokalemia as a sensitive biomarker of disease severity and the requirement for invasive mechanical ventilation requirement in COVID-19 pneumonia: a case series of 306 Mediterranean patients. Int J Infect Dis. 2020;100: 449–454. doi: 10.1016/j.ijid.2020.09.033
  58. Nakanishi H, Suzuki M, Maeda H, et al. Differential diagnosis of COVID-19: importance of measuring blood lymphocytes, serum electrolytes, and olfactory and taste functions. Tohoku J Exp Med. 2020;252(2):109–119. doi: 10.1620/tjem.252.109
  59. Wang Y, Chen L, Wang J, et al. Electrocardiogram analysis of patients with different types of COVID-19. Ann Noninvasive Electrocardiol. 2020;25(6):e12806. doi: 10.1111/anec.12806
  60. Silhol F, Sarlon G, Deharo JC, Vaïsse B. Downregulation of ACE2 induces overstimulation of the renin-angiotensin system in COVID-19: should we block the renin-angiotensin system? Hypertens Res. 2020;43(8):854–856. doi: 10.1038/s41440-020-0476-3
  61. Di Nicolantonio JJ, O’Keefe JH. Magnesium and vitamin D deficiency as a potential cause of immune dysfunction, cytokine storm and disseminated intravascular coagulation in COVID-19 patients. Mo Med. 2021;118(1):68–73.
  62. Story MJ. Essential sufficiency of zinc, ω-3 polyunsaturated fatty acids, vitamin D and magnesium for prevention and treatment of COVID-19, diabetes, cardiovascular diseases, lung diseases and cancer. Biochimie. 2021;187:94–109. doi: 10.1016/j.biochi.2021.05.013
  63. Micke O, Vormann J, Kisters K. Magnesium and COVID-19 ― some further comments ― a commentary on wallace tc. Combating COVID-19 and building immune resilience: a potential role for magnesium nutrition? J Am Coll Nutr. 2021;40(8):732–734. doi: 10.1080/07315724.2020.1816230.
  64. Zeng HL, Yang Q, Yuan P, et al. Associations of essential and toxic metals/metalloids in whole blood with both disease severity and mortality in patients with COVID-19. FASEB J. 2021;35(3):e21392. doi: 10.1096/fj.202002346RR
  65. Quilliot D, Bonsack O, Jaussaud R, Mazur A. Dysmagnesemia in COVID-19 cohort patients: prevalence and associated factors. Magnes Res. 2020;33(4):114–122. doi: 10.1684/mrh.2021.0476
  66. Van Kempen TA, Deixler E. SARS-CoV-2: influence of phosphate and magnesium, moderated by vitamin D, on energy (ATP) metabolism and on severity of COVID-19. Am J Physiol Endocrinol Metab. 2021;320(1):E2–E6. doi: 10.1152/ajpendo.00474.2020
  67. Iotti S, Wolf F, Mazur A, Maier JA. The COVID-19 pandemic: is there a role for magnesium? Hypotheses and perspectives. Magnes Res. 2020;33(2):21–27. doi: 10.1684/mrh.2020.0465
  68. Sankova MV, Kytko OV, Meylanova RD, et al. Possible prospects for using modern magnesium preparations for increasing stress resistance during COVID-19 pandemic. Research Results in Pharmacology. 2020;6(4):65–76. doi: 10.3897/rrpharmacology6.59407
  69. Tarasov EA, Blinov DV, Zimovina UV, Sandakova EA. Magnesium deficiency and stress: relationship issues, diagnostic tests, and treatment approaches. Therapeutic Archive. 2015;87(9):114–122. (In Russ). doi: 10.17116/terarkh2015879114-122
  70. Jose J, Magoon R, Kapoor PM. Magnesium: the neglected cation in COVID-19? J Anaesthesiol Clin Pharmacol. 2021;37(1):141–142. doi: 10.4103/joacp.JOACP_628_20

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Romanov A.O., Sharipova M.M., Ivkina M.V., Arkhangelskaya A.N., Gurevich K.G.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies