SEMI-ANALYTICAL REFINEMENT OF SUBMICRON DROPLET GROWTH BY CONDENSATION

封面

如何引用文章

全文:

详细

Understanding the growth dynamics of water droplets is crucial for accurate modelling of cloud formation and climate processes. This paper delves into the theoretical aspects of condensational growth of tiny water droplets in humid environments, such as warm clouds. The effect of droplet size on growth is examined using a semi-analytical model based on established kinetic principles, including the effects of diffusion and the medium discontinuity. While it was previously understood that smaller sizes are followed by slower growth rates, the refined model predicts that submicron droplets should grow even more slowly than anticipated. The model is consistent with previous conclusions and encompasses the growth of larger droplets as a limiting case. This model is expected to be applicable across a broad range of settings, from near-freezing conditions in clouds to elevated temperatures in technical applications involving hot steam-droplet mixtures, where Stefan flows are significant.

作者简介

D. Gabyshev

Geophysical Center, Russian Academy of Sciences

Email: gabyshev-dmitrij@rambler.ru
ORCID iD: 0000-0002-9798-7213
SPIN 代码: 6653-5340
Scopus 作者 ID: 56653536600
Researcher ID: AAC-5735-2019
candidate of physical and mathematical sciences 2017

参考

  1. Dalla Barba F., Wang J., Picano F. Revisiting D2-law for the evaporation of dilute droplets // Physics of Fluids. — 2021. — Vol. 33, no. 5. — doi: 10.1063/5.0051078.
  2. Eucken A. Lehrbuch der Chemischen Physik. Vol. 126. — Leipzig, 1930. — 988 p. — DOI: 10. 1038/126988b0. — (In German).
  3. Fuchs N. A. Evaporation and droplet growth in gaseous medium. — Elsevier, 1959. — doi: 10.1016/C2013-0-08145-5.
  4. Gabyshev D. N., Fedorets A. A., Klemm O. Condensational growth of water droplets in an external electric field at different temperatures // Aerosol Science and Technology. — 2020. — Vol. 54, no. 12. — P. 1556–1566. — doi: 10.1080/02786826.2020.1804522.
  5. Gabyshev D. N. Condensational growth of spherical water droplets altered under external electric fields // Journal of Aerosol Science. — 2025. — Vol. 186. — doi: 10.1016/j.jaerosci.2025.106554.
  6. Golubkov G. V., Manzhelii M. I., Berlin A. A., et al. Effects of the Interaction of Microwave Radiation with the Atmosphere on the Passive Remote Sensing of the Earth’s Surface: Problems and Solutions (Review) // Russian Journal of Physical Chemistry B. — 2018. — Vol. 12, no. 4. — P. 725–748. — doi: 10.1134/s1990793118040061.
  7. Guerrini A., Murino G. Electric forces and physics of clouds // Il Nuovo Cimento C. — 1990. — Vol. 13, no. 3. — P. 663– 668. — doi: 10.1007/bf02507630.
  8. Jakubczyk D., Kolwas M., Derkachov G., et al. Evaporation of Micro-Droplets: the ”Radius-Square-Law” Revisited // Acta Physica Polonica A. — 2012. — Vol. 122, no. 4. — P. 709–716. — doi: 10.12693/aphyspola.122.709.
  9. Kasparian J., Rohwetter P., Wöste L., et al. Laser-assisted water condensation in the atmosphere: a step towards modulating precipitation? // Journal of Physics D: Applied Physics. — 2012. — Vol. 45, no. 29. — doi: 10.1088/0022-3727/45/29/293001.
  10. Kolwas M., Jakubczyk D., Do Duc T., et al. Evaporation of a free microdroplet of a binary mixture of liquids with different volatilities // Soft Matter. — 2019. — Vol. 15, no. 8. — P. 1825–1832. — doi: 10.1039/c8sm02220h.
  11. Kozlov V. N. Electrical methods for artificial precipitation regulation: Doctor thesis. — St. Petersburg : The Voeikov Main Geophysical Observatory, 2013. — (In Russian).
  12. Kozyrev A. V., Sitnikov A. G. Evaporation of a spherical droplet in a moderate-pressure gas // Physics-Uspekhi. — 2001. — Vol. 44, no. 7. — P. 725–733. — doi: 10.1070/pu2001v044n07abeh000953.
  13. Mozurkewich M. Aerosol Growth and the Condensation Coefficient for Water: A Review // Aerosol Science and Technology. — 1986. — Vol. 5, no. 2. — P. 223–236. — doi: 10.1080/02786828608959089.
  14. Poydenot F., Andreotti B. Gap in drop collision rate between diffusive and inertial regimes explains the stability of fogs and non-precipitating clouds // Journal of Fluid Mechanics. — 2024. — Vol. 987. — doi: 10.1017/jfm.2024.413.
  15. Pruppacher H. R., Klett J. D. Microphysics of Clouds and Precipitation. — Springer Netherlands, 2010. — doi: 10.1007/978-0-306-48100-0.
  16. Quan X., Yang L., Cheng P. Effects of electric fields on onset of dropwise condensation based on Gibbs free energy and availability analyses // International Communications in Heat and Mass Transfer. — 2014. — Vol. 58. — P. 105–110. — doi: 10.1016/j.icheatmasstransfer.2014.08.026.
  17. Rana A. S., Lockerby D. A., Sprittles J. E. Lifetime of a Nanodroplet: Kinetic Effects and Regime Transitions // Physical Review Letters. — 2019. — Vol. 123, no. 15. — doi: 10.1103/physrevlett.123.154501.
  18. Seaver A. E. Closed Form Equations for the Evaporation Rate and Droplet Size of Knudsen Droplets // Aerosol Science and Technology. — 1984. — Vol. 3, no. 2. — P. 177–185. — doi: 10.1080/02786828408959006.
  19. Shuleikin V. V. Physics of Sea. — Moscow : Nauka, 1968. — 1090 p. — (In Russian).
  20. Strizhak P. A., Piskunov M. V., Volkov R. S., et al. Evaporation, boiling and explosive breakup of oil–water emulsion drops under intense radiant heating // Chemical Engineering Research and Design. — 2017. — Vol. 127. — P. 72–80. — doi: 10.1016/j.cherd.2017.09.008.
  21. Trenberth K. E., Smith L. The Mass of the Atmosphere: A Constraint on Global Analyses // Journal of Climate. — 2005. — Vol. 18, no. 6. — P. 864–875. — doi: 10.1175/jcli-3299.1.
  22. Wang Q., Xie H., Hu Z., et al. The Impact of the Electric Field on Surface Condensation of Water Vapor: Insight from Molecular Dynamics Simulation // Nanomaterials. — 2019. — Vol. 9, no. 1. — P. 64. — doi: 10.3390/nano9010064.
  23. Wang P., Chen Z. Vapor Condensation Under Electric Field: A Study Using Molecular Dynamics Simulation // Supercomputing Frontiers. — Springer International Publishing, 2022. — P. 20–30. — doi: 10.1007/978-3-031-10419-0_2.
  24. Wang Y., Rastogi D., Malek K., et al. Electric Field-Induced Water Condensation Visualized by Vapor-Phase Transmission Electron Microscopy // The Journal of Physical Chemistry A. — 2023a. — Vol. 127, no. 11. — P. 2545–2553. — doi: 10.1021/acs.jpca.2c08187.
  25. Wang Y., Rastogi D., Malek K., et al. Electric Field-Induced Water Condensation Visualized by Vapor-Phase Transmission Electron Microscopy // The Journal of Physical Chemistry A. — 2023b. — Vol. 127, no. 11. — P. 2545–2553. — doi: 10.1021/acs.jpca.2c08187.
  26. Wang Z.-J., Wang S.-Y., Wang D.-Q., et al. The growth of condensed nanodroplets in electric fields: A molecular dynamics study // International Journal of Heat and Mass Transfer. — 2024. — Vol. 226. — doi: 10.1016/j.ijheatmasstransfer.2024.125511.
  27. Wilderer P. A., Fluher H., Davydova E. Risking Weather Engineering: Fiction or Contribution to Conflict Prevention? // Sustainable Risk Management. — Springer International Publishing, 2017. — P. 103–126. — doi: 10.1007/978-3-319-66233-6_8.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Gabyshev D., 2025

Creative Commons License
此作品已接受知识共享署名 4.0国际许可协议的许可