SEMI-ANALYTICAL REFINEMENT OF SUBMICRON DROPLET GROWTH BY CONDENSATION
- Авторы: Gabyshev D.1
-
Учреждения:
- Выпуск: Том 25, № 2 (2025)
- Страницы: ES2015
- Раздел: Статьи
- URL: https://journals.rcsi.science/1681-1208/article/view/337462
- DOI: https://doi.org/10.2205/2025ES000974
- EDN: https://elibrary.ru/zehdks
- ID: 337462
Цитировать
Полный текст
Аннотация
Ключевые слова
Об авторах
D. Gabyshev
Email: gabyshev-dmitrij@rambler.ru
ORCID iD: 0000-0002-9798-7213
SPIN-код: 6653-5340
Scopus Author ID: 56653536600
ResearcherId: AAC-5735-2019
Список литературы
Dalla Barba F., Wang J., Picano F. Revisiting D2-law for the evaporation of dilute droplets // Physics of Fluids. — 2021. — Vol. 33, no. 5. — doi: 10.1063/5.0051078. Eucken A. Lehrbuch der Chemischen Physik. Vol. 126. — Leipzig, 1930. — 988 p. — DOI: 10. 1038/126988b0. — (In German). Fuchs N. A. Evaporation and droplet growth in gaseous medium. — Elsevier, 1959. — doi: 10.1016/C2013-0-08145-5. Gabyshev D. N., Fedorets A. A., Klemm O. Condensational growth of water droplets in an external electric field at different temperatures // Aerosol Science and Technology. — 2020. — Vol. 54, no. 12. — P. 1556–1566. — doi: 10.1080/02786826.2020.1804522. Gabyshev D. N. Condensational growth of spherical water droplets altered under external electric fields // Journal of Aerosol Science. — 2025. — Vol. 186. — doi: 10.1016/j.jaerosci.2025.106554. Golubkov G. V., Manzhelii M. I., Berlin A. A., et al. Effects of the Interaction of Microwave Radiation with the Atmosphere on the Passive Remote Sensing of the Earth’s Surface: Problems and Solutions (Review) // Russian Journal of Physical Chemistry B. — 2018. — Vol. 12, no. 4. — P. 725–748. — doi: 10.1134/s1990793118040061. Guerrini A., Murino G. Electric forces and physics of clouds // Il Nuovo Cimento C. — 1990. — Vol. 13, no. 3. — P. 663– 668. — doi: 10.1007/bf02507630. Jakubczyk D., Kolwas M., Derkachov G., et al. Evaporation of Micro-Droplets: the ”Radius-Square-Law” Revisited // Acta Physica Polonica A. — 2012. — Vol. 122, no. 4. — P. 709–716. — doi: 10.12693/aphyspola.122.709. Kasparian J., Rohwetter P., Wöste L., et al. Laser-assisted water condensation in the atmosphere: a step towards modulating precipitation? // Journal of Physics D: Applied Physics. — 2012. — Vol. 45, no. 29. — doi: 10.1088/0022-3727/45/29/293001. Kolwas M., Jakubczyk D., Do Duc T., et al. Evaporation of a free microdroplet of a binary mixture of liquids with different volatilities // Soft Matter. — 2019. — Vol. 15, no. 8. — P. 1825–1832. — doi: 10.1039/c8sm02220h. Kozlov V. N. Electrical methods for artificial precipitation regulation: Doctor thesis. — St. Petersburg : The Voeikov Main Geophysical Observatory, 2013. — (In Russian). Kozyrev A. V., Sitnikov A. G. Evaporation of a spherical droplet in a moderate-pressure gas // Physics-Uspekhi. — 2001. — Vol. 44, no. 7. — P. 725–733. — doi: 10.1070/pu2001v044n07abeh000953. Mozurkewich M. Aerosol Growth and the Condensation Coefficient for Water: A Review // Aerosol Science and Technology. — 1986. — Vol. 5, no. 2. — P. 223–236. — doi: 10.1080/02786828608959089. Poydenot F., Andreotti B. Gap in drop collision rate between diffusive and inertial regimes explains the stability of fogs and non-precipitating clouds // Journal of Fluid Mechanics. — 2024. — Vol. 987. — doi: 10.1017/jfm.2024.413. Pruppacher H. R., Klett J. D. Microphysics of Clouds and Precipitation. — Springer Netherlands, 2010. — doi: 10.1007/978-0-306-48100-0. Quan X., Yang L., Cheng P. Effects of electric fields on onset of dropwise condensation based on Gibbs free energy and availability analyses // International Communications in Heat and Mass Transfer. — 2014. — Vol. 58. — P. 105–110. — doi: 10.1016/j.icheatmasstransfer.2014.08.026. Rana A. S., Lockerby D. A., Sprittles J. E. Lifetime of a Nanodroplet: Kinetic Effects and Regime Transitions // Physical Review Letters. — 2019. — Vol. 123, no. 15. — doi: 10.1103/physrevlett.123.154501. Seaver A. E. Closed Form Equations for the Evaporation Rate and Droplet Size of Knudsen Droplets // Aerosol Science and Technology. — 1984. — Vol. 3, no. 2. — P. 177–185. — doi: 10.1080/02786828408959006. Shuleikin V. V. Physics of Sea. — Moscow : Nauka, 1968. — 1090 p. — (In Russian). Strizhak P. A., Piskunov M. V., Volkov R. S., et al. Evaporation, boiling and explosive breakup of oil–water emulsion drops under intense radiant heating // Chemical Engineering Research and Design. — 2017. — Vol. 127. — P. 72–80. — doi: 10.1016/j.cherd.2017.09.008. Trenberth K. E., Smith L. The Mass of the Atmosphere: A Constraint on Global Analyses // Journal of Climate. — 2005. — Vol. 18, no. 6. — P. 864–875. — doi: 10.1175/jcli-3299.1. Wang Q., Xie H., Hu Z., et al. The Impact of the Electric Field on Surface Condensation of Water Vapor: Insight from Molecular Dynamics Simulation // Nanomaterials. — 2019. — Vol. 9, no. 1. — P. 64. — doi: 10.3390/nano9010064. Wang P., Chen Z. Vapor Condensation Under Electric Field: A Study Using Molecular Dynamics Simulation // Supercomputing Frontiers. — Springer International Publishing, 2022. — P. 20–30. — doi: 10.1007/978-3-031-10419-0_2. Wang Y., Rastogi D., Malek K., et al. Electric Field-Induced Water Condensation Visualized by Vapor-Phase Transmission Electron Microscopy // The Journal of Physical Chemistry A. — 2023a. — Vol. 127, no. 11. — P. 2545–2553. — doi: 10.1021/acs.jpca.2c08187. Wang Y., Rastogi D., Malek K., et al. Electric Field-Induced Water Condensation Visualized by Vapor-Phase Transmission Electron Microscopy // The Journal of Physical Chemistry A. — 2023b. — Vol. 127, no. 11. — P. 2545–2553. — doi: 10.1021/acs.jpca.2c08187. Wang Z.-J., Wang S.-Y., Wang D.-Q., et al. The growth of condensed nanodroplets in electric fields: A molecular dynamics study // International Journal of Heat and Mass Transfer. — 2024. — Vol. 226. — doi: 10.1016/j.ijheatmasstransfer.2024.125511. Wilderer P. A., Fluher H., Davydova E. Risking Weather Engineering: Fiction or Contribution to Conflict Prevention? // Sustainable Risk Management. — Springer International Publishing, 2017. — P. 103–126. — doi: 10.1007/978-3-319-66233-6_8.
Дополнительные файлы
