NUMERICAL SIMULATION OF RADAR SIGNAL REFLECTED BY SEA SURFACE WITH DIFFERENT SEA ICE CONCENTRATION
- Authors: Titchenko Y.A.1, Karaev V.Y.2, Panfilova M.A.1, Ponur K.A.2, Kuznetsov Y.A.3, Meshkov E.M.1
-
Affiliations:
- Institute of Applied Physics
- Federal Research Center A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences
- National Research Lobachevsky State University of Nizhny Novgorod
- Issue: Vol 25, No 3 (2025)
- Pages: ES3007
- Section: Articles
- URL: https://journals.rcsi.science/1681-1208/article/view/352548
- DOI: https://doi.org/10.2205/2025es001017
- EDN: https://elibrary.ru/kzhtur
- ID: 352548
Cite item
Full Text
Abstract
About the authors
Yu. A. Titchenko
Institute of Applied Physics
Email: yuriy@ipfran.ru
ORCID iD: 0000-0001-7762-7731
ResearcherId: S-7854-2016
candidate of physical and mathematical sciences
V. Yu. Karaev
Federal Research Center A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences
ORCID iD: 0000-0002-4054-4905
M. A. Panfilova
Institute of Applied Physics
ORCID iD: 0000-0002-3795-0347
K. A. Ponur
Federal Research Center A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences
ORCID iD: 0000-0003-3189-7095
Ya. A. Kuznetsov
National Research Lobachevsky State University of Nizhny Novgorod
ORCID iD: 0009-0009-5114-2125
E. M. Meshkov
Institute of Applied Physics
ORCID iD: 0000-0002-5353-7528
References
Басс Ф., Фукс И. Рассеяние волн на статистически неровной поверхности. — Москва : Наука, 1972. — 424 с. Заболотских Е. В., Хворостовский К. С., Животовская М. А. и др. Спутниковое микроволновое зондирование морского льда Арктики. Обзор // Современные проблемы дистанционного зондирования Земли из космоса. — 2023. — Т. 20, № 1. — С. 9—34. — doi: 10.21046/2070-7401-2023-20-1-9-34. Караев В. Ю., Панфилова М. А., Митник Л. М. и др. Обратное рассеяние радиолокационного сигнала СВЧ диапазона однолетним морским льдом при малых углах падения // Современные проблемы дистанционного зондирования Земли из космоса. — 2021. — Т. 18, № 3. — С. 229—241. — doi: 10.21046/2070-7401-2021-18-3-229-241. Радиолокационные методы и средства оперативного дистанционного зондирования Земли с аэро-космических носителей / под ред. С. Н. Конюхова, В. И. Драновского, В. Н. Цымбала. — Киев : Авиадиагностика, 2007. — 440 с. Chan M. A., Comiso J. C. Arctic Cloud Characteristics as Derived from MODIS, CALIPSO, and CloudSat // Journal of Climate. — 2013. — Vol. 26, no. 10. — P. 3285–3306. — doi: 10.1175/jcli-d-12-00204.1. Comiso J. C., Cavalieri D. J., Markus T. Sea ice concentration, ice temperature, and snow depth using AMSR-E data // IEEE Transactions on Geoscience and Remote Sensing. — 2003. — Vol. 41, no. 2. — P. 243–252. — doi: 10.1109/tgrs.2002.808317. Hauser D., Tison C., Amiot T., et al. SWIM: The First Spaceborne Wave Scatterometer // IEEE Transactions on Geoscience and Remote Sensing. — 2017. — Vol. 55, no. 5. — P. 3000–3014. — doi: 10.1109/tgrs.2017.2658672. JAXA. GPM Data Utilization Handbook. Version 1.0. — Japan Aerospace Exploration Agency, 2014. — 92 p. Karaev V., Ponur K., Panfilova M., et al. Radar Sensing of SEA ICE at the Small Incidence Angles: Simulation and Comparison of the Different Approaches // IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium. — IEEE, 2022. — P. 3818–3821. — doi: 10.1109/igarss46834.2022.9883231. Laxon S. W., Giles K. A., Ridout A. L., et al. CryoSat-2 estimates of Arctic sea ice thickness and volume // Geophysical Research Letters. — 2013. — Vol. 40, no. 4. — P. 732–737. — doi: 10.1002/grl.50193. Mitnik L., Kuleshov V., Baranyuk A., et al. Monitoring of the Arctic Region Using Optical and Infrared Data from the Highly Elliptical Arktika-M Space System and Microwave Measurements from Low Earth Orbit Satellites // IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium. — 2022. — P. 7194–7197. — doi: 10.1109/igarss46834.2022.9883384. Nekrasov A., Khachaturian A., Labun J., et al. Towards the Sea Ice and Wind Measurement by a C-Band Scatterometer at Dual VV/HH Polarization: A Prospective Appraisal // Remote Sensing. — 2020. — Vol. 12, no. 20. — P. 3382. — doi: 10.3390/rs12203382. Panfilova M., Karaev V. Sea Ice Detection Method Using the Dependence of the Radar Cross-Section on the Incidence Angle // Remote Sensing. — 2024. — Vol. 16, no. 5. — P. 859. — doi: 10.3390/rs16050859. Peureux C., Longépé N., Mouche A., et al. Sea-Ice Detection From Near-Nadir Ku-Band Echoes From CFOSAT/SWIM Scatterometer // Earth and Space Science. — 2022. — Vol. 9, no. 6. — doi: 10.1029/2021ea002046. Ryabkova M., Karaev V., Guo J., et al. A Review of Wave Spectrum Models as Applied to the Problem of Radar Probing of the Sea Surface // Journal of Geophysical Research: Oceans. — 2019. — Vol. 124, no. 10. — P. 7104–7134. — doi: 10.1029/2018jc014804. Zabolotskikh E., Balashova E., Kudryavtsev V., et al. Synergistic Use of Satellite Scatterometer, SAR and Altimeter Data to Study First Year Sea Ice Properties // 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS. — IEEE, 2021. — P. 5633–5636. — doi: 10.1109/igarss47720.2021.9553828.
Supplementary files



