NUMERICAL SIMULATION OF RADAR SIGNAL REFLECTED BY SEA SURFACE WITH DIFFERENT SEA ICE CONCENTRATION

Мұқаба

Дәйексөз келтіру

Толық мәтін

Аннотация

Currently, methods of radar remote sensing at small incidence angles (from the vertical to 15∘) are actively developed. An important application of these methods is the determination of the presence and sea ice concentration. This paper presents an approach to numerical simulation of an experiment in which a reflecting surface with different sea ice concentrations is modeled and then the characteristics of the radar signal reflected by this surface for a given measurement geometry are modeled. Without loss of generality, in this paper we will consider a specific geometry of the DPR (Dual-frequency Precipitation Radar) radar on the GPM (Global Precipitation Measurement) mission satellite and only the Ku-band of this radar. The signal reflected by sea waves will be calculated within the Kirchhoff approximation. Since there is no generally accepted model for the signal scattered by the sea ice at small incidence angles, an empirical formula obtained from DPR data will be used as a model. The paper discusses a method for determining sea ice concentration using radar sensing data at low incidence angles.

Авторлар туралы

Yu. Titchenko

Institute of Applied Physics

Email: yuriy@ipfran.ru
ORCID iD: 0000-0001-7762-7731
ResearcherId: S-7854-2016
candidate of physical and mathematical sciences

V. Karaev

Federal Research Center A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences

ORCID iD: 0000-0002-4054-4905

M. Panfilova

Institute of Applied Physics

ORCID iD: 0000-0002-3795-0347

K. Ponur

Federal Research Center A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences

ORCID iD: 0000-0003-3189-7095

Ya. Kuznetsov

National Research Lobachevsky State University of Nizhny Novgorod

ORCID iD: 0009-0009-5114-2125

E. Meshkov

Institute of Applied Physics

ORCID iD: 0000-0002-5353-7528

Әдебиет тізімі

  1. Басс Ф., Фукс И. Рассеяние волн на статистически неровной поверхности. — Москва : Наука, 1972. — 424 с.
  2. Заболотских Е. В., Хворостовский К. С., Животовская М. А. и др. Спутниковое микроволновое зондирование морского льда Арктики. Обзор // Современные проблемы дистанционного зондирования Земли из космоса. — 2023. — Т. 20, № 1. — С. 9—34. — doi: 10.21046/2070-7401-2023-20-1-9-34.
  3. Караев В. Ю., Панфилова М. А., Митник Л. М. и др. Обратное рассеяние радиолокационного сигнала СВЧ диапазона однолетним морским льдом при малых углах падения // Современные проблемы дистанционного зондирования Земли из космоса. — 2021. — Т. 18, № 3. — С. 229—241. — doi: 10.21046/2070-7401-2021-18-3-229-241.
  4. Радиолокационные методы и средства оперативного дистанционного зондирования Земли с аэро-космических носителей / под ред. С. Н. Конюхова, В. И. Драновского, В. Н. Цымбала. — Киев : Авиадиагностика, 2007. — 440 с.
  5. Chan M. A., Comiso J. C. Arctic Cloud Characteristics as Derived from MODIS, CALIPSO, and CloudSat // Journal of Climate. — 2013. — Vol. 26, no. 10. — P. 3285–3306. — doi: 10.1175/jcli-d-12-00204.1.
  6. Comiso J. C., Cavalieri D. J., Markus T. Sea ice concentration, ice temperature, and snow depth using AMSR-E data // IEEE Transactions on Geoscience and Remote Sensing. — 2003. — Vol. 41, no. 2. — P. 243–252. — doi: 10.1109/tgrs.2002.808317.
  7. Hauser D., Tison C., Amiot T., et al. SWIM: The First Spaceborne Wave Scatterometer // IEEE Transactions on Geoscience and Remote Sensing. — 2017. — Vol. 55, no. 5. — P. 3000–3014. — doi: 10.1109/tgrs.2017.2658672.
  8. JAXA. GPM Data Utilization Handbook. Version 1.0. — Japan Aerospace Exploration Agency, 2014. — 92 p.
  9. Karaev V., Ponur K., Panfilova M., et al. Radar Sensing of SEA ICE at the Small Incidence Angles: Simulation and Comparison of the Different Approaches // IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium. — IEEE, 2022. — P. 3818–3821. — doi: 10.1109/igarss46834.2022.9883231.
  10. Laxon S. W., Giles K. A., Ridout A. L., et al. CryoSat-2 estimates of Arctic sea ice thickness and volume // Geophysical Research Letters. — 2013. — Vol. 40, no. 4. — P. 732–737. — doi: 10.1002/grl.50193.
  11. Mitnik L., Kuleshov V., Baranyuk A., et al. Monitoring of the Arctic Region Using Optical and Infrared Data from the Highly Elliptical Arktika-M Space System and Microwave Measurements from Low Earth Orbit Satellites // IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium. — 2022. — P. 7194–7197. — doi: 10.1109/igarss46834.2022.9883384.
  12. Nekrasov A., Khachaturian A., Labun J., et al. Towards the Sea Ice and Wind Measurement by a C-Band Scatterometer at Dual VV/HH Polarization: A Prospective Appraisal // Remote Sensing. — 2020. — Vol. 12, no. 20. — P. 3382. — doi: 10.3390/rs12203382.
  13. Panfilova M., Karaev V. Sea Ice Detection Method Using the Dependence of the Radar Cross-Section on the Incidence Angle // Remote Sensing. — 2024. — Vol. 16, no. 5. — P. 859. — doi: 10.3390/rs16050859.
  14. Peureux C., Longépé N., Mouche A., et al. Sea-Ice Detection From Near-Nadir Ku-Band Echoes From CFOSAT/SWIM Scatterometer // Earth and Space Science. — 2022. — Vol. 9, no. 6. — doi: 10.1029/2021ea002046.
  15. Ryabkova M., Karaev V., Guo J., et al. A Review of Wave Spectrum Models as Applied to the Problem of Radar Probing of the Sea Surface // Journal of Geophysical Research: Oceans. — 2019. — Vol. 124, no. 10. — P. 7104–7134. — doi: 10.1029/2018jc014804.
  16. Zabolotskikh E., Balashova E., Kudryavtsev V., et al. Synergistic Use of Satellite Scatterometer, SAR and Altimeter Data to Study First Year Sea Ice Properties // 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS. — IEEE, 2021. — P. 5633–5636. — doi: 10.1109/igarss47720.2021.9553828.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Titchenko Y.A., Karaev V.Y., Panfilova M.A., Ponur K.A., Kuznetsov Y.A., Meshkov E.M., 2025

Creative Commons License
Бұл мақала лицензия бойынша қолжетімді Creative Commons Attribution 4.0 International License.