SPECIFIC FEATURES OF INTERNAL WAVES MANIFESTATION IN THE NEAR MOUTH ZONE OF THE DANUBE BY HIGH-RESOLUTIONSATELLITE DATA

Cover Page

Cite item

Full Text

Abstract

The mechanisms of manifestation of internal waves in satellite data of the optical range are considered for the mouth area of the Danube. Three main mechanisms for the manifestation of internal waves are identified – the previously described dynamic (due to a change in the roughness of the sea surface in convergent zones created by a moving internal wave), slick – when surfactants accumulate in convergence zones, and a new one – change in the brightness of the sea surface defined by scattering layer thickness modulation by internal waves. Data from the OLI Landsat-8 scanner for 2015–2019 were used for the analysis. It is shown that in different situations, internal waves can manifest themselves either due to various mechanisms or only due to one of them. Summary maps of manifestations of internal waves in the study area were constructed. Additionally, the situations with quasi-synchronous data of MSI Sentinel-2 and C-SAR Sentinel-1, which displayed the same packets of internal waves, are considered. The selection of such pairs made it possible to estimate the phase velocities of internal waves, which ranged from 0.05 m/s (0.19 km/h) to0.95 m/s (3.43 km/h) in various hydrometeorological situations. Examples of internal wavefront transformation on submesoscale eddies are presented.

About the authors

A. V. Medvedeva

Federal State Budget Scientific Institution Federal Research Centre «Marine Hydrophysical Institute of RAS»

Email: Suomi-NPP@mail.ru
ORCID iD: 0000-0001-7856-623X
Remote Sensing Department

T. V. Mikhailichenko

Federal State Budget Scientific Institution Federal Research Centre «Marine Hydrophysical Institute of RAS»

Email: goldpineapple2020@gmail.com
ORCID iD: 0000-0002-8696-9722
Remote Sensing Department

S. V. Stanichny

Federal State Budget Scientific Institution Federal Research Centre «Marine Hydrophysical Institute of RAS»

Email: sstanichny@mail.ru
ORCID iD: 0000-0002-1033-5678
Remote Sensing Department, candidate of physical and mathematical sciences

V. V. Bulatov

Ishlinsky Institute for Problems in Mechanics RAS

Email: internalwave@mail.ru
ORCID iD: 0000-0002-4390-4013
Laboratory of Complex Fluid Mechanics, doctor of physical and mathematical sciences, doctor of economic sciences

References

  1. Иванов В. А., Серебряный А. Н. Короткопериодные внутренние волны в прибрежной зоне бесприливного моря // Известия Академии наук СССР. Физика атмосферы и океана. — 1985. — Т. 21, No 6. — С. 648—656.
  2. Лаврова О. Ю., Митягина М. И., Сабинин К. Д. Возможные механизмы генерации внутренних волн в северо-восточной части Черного моря // Современные проблемы дистанционного зондирования Земли из космоса. —2008. — Т. 2, No 5. — С. 128—136.
  3. Митягина М. И., Лаврова О. Ю. Спутниковые наблюдения поверхностных проявлений внутренних волн в морях без приливов // Современные проблемы дистанционного зондирования Земли из космоса. — 2010. — Т. 7, No 1. —С. 260—272.
  4. Серебряный А. Н., Иванов В. А. Исследования внутренних волн в Черном море с океанографической платформы МГИ // Фундаментальная и прикладная гидрофизика. — 2013. — Т. 6, No 3. — С. 34—45.
  5. Alpers W. Theory of radar imaging of internal waves // Nature. — 1985. — Vol. 314, no. 6008. — P. 245–247. — doi: 10.1038/314245a0.
  6. Bondur V. G., Sabinin K. D., Grebenyuk Y. V. Generation of inertia-gravity waves on the island shelf//Izvestiya, Atmospheric and Oceanic Physics. — 2015. — Vol. 51, no. 2. — P. 208–213. — doi: 10.1134/S0001433815020036.
  7. Bondur V. G., Serebryany A. N., Zamshin V. V.,et al.Intensive Internal Waves with Anomalous Heights in the BlackSea Shelf Area // Izvestiya, Atmospheric and Oceanic Physics. — 2019. — Vol. 55, no. 1. — P. 99–109. — doi: 10.1134/S000143381901002X.
  8. Bulatov V. V., Ponomarev A. N. About the Possibility of Improving the Image Quality of Laser Location in the Process of Remote Sensing of the Water Surface//Processes in GeoMedia-Volume VI. — Springer International Publishing,2023. — P. 277–282. — doi: 10.1007/978-3-031-16575-7_26.
  9. Copernicus Open Access Hub. — URL: https://scihub.copernicus.eu/dhus/%5C#/home (visited on 2022).
  10. Eckart C. Internal Waves in the Ocean//The Physics of Fluids. — 1961. — Vol. 4, no. 7. — P. 791–799. — doi: 10.1063/1.1706408.
  11. EOSDIS. Worldview. — URL: https://worldview.earthdata.nasa.gov/ (visited on 2022).
  12. Ivanov V. A., Shul’ga T. Y., Bagaev A. V., et al. Internal Waves on the Black Sea Shelf near the Heracles Peninsula: Modeling and Observation // Physical Oceanography. — 2019. — Vol. 26, no. 4. — doi: 10.22449/1573-160X-2019-4-288-304.
  13. Khimchenko E., Ostrovskii A., Klyuvitkin A.,et al. Seasonal Variability of Near-Inertial Internal Waves in the Deep Central Part of the Black Sea//Journal of Marine Science and Engineering. — 2022. — Vol. 10, no. 5. — P. 557. —doi: 10.3390/jmse10050557.
  14. Lavrova O., Mityagina M. Satellite Survey of Internal Waves in the Black and Caspian Seas//Remote Sensing. —2017. — Vol. 9, no. 9. — P. 892. — doi: 10.3390/rs9090892.
  15. Lavrova O. Y., Mityagina M. I., Serebryany A. N.,et al. Internal waves in the Black Sea: satellite observations and in-situ measurements // Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions 2014. — SPIE,2014. — doi: 10.1117/12.2067047.
  16. Nash J. D., Moum J. N. River plumes as a source of large-amplitude internal waves in the coastal ocean // Nature. —2005. — Vol. 437, no. 7057. — P. 400–403. — doi: 10.1038/nature03936.
  17. Navionics. — URL: https://www.navionics.com/ (visited on 2022).
  18. Robinson I. S. Measuring the oceans from space: The Principles and Methods of Satellite Oceanography. — Springer,2004. — 716 p.
  19. Sabinin K. D., Serebryanyi A. N., Nazarov A. A. Intensive internal waves in the World Ocean//Oceanology. — 2004. —Vol. 44, no. 6. — P. 753–758.
  20. Sentinelhub Playground. — URL: https://apps.sentinel-hub.com/sentinel-playground/ (visited on 2022).
  21. USGS. EarthExplorer. — URL: https://earthexplorer.usgs.gov/ (visited on 2022).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Медведева А.V., Михайличенко Т.V., Станичный С.V., Булатов В.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.