Problems of development of lithium-ion batteries all over the world and in Russia

Cover Page

Cite item

Full Text

Abstract

A brief analysis of the current situation in the development of lithium-ion batteries in Russia and all over the world has been carried out. The conclusion is made that Russia produces only a basis point of lithium-ion batteries in the world. It is predicted that Russian production of lithium-ion batteries may increase up to 0.2% in the world by 2030.

About the authors

Tatiana L'vovna Kulova

Федеральное государственное бюджетное учреждение науки Институт физической химии и электрохимии им. А.Н. Фрумкина Российской академии наук

ORCID iD: 0000-0002-5838-804X
Scopus Author ID: 6701624947
ResearcherId: J-8006-2013
119071 Москва, Ленинский просп., 31, корп. 4

Alexander Mordukhaevich Skundin

Федеральное государственное бюджетное учреждение науки Институт физической химии и электрохимии им. А.Н. Фрумкина Российской академии наук

ORCID iD: 0000-0001-7627-5703
Scopus Author ID: 7004327964
ResearcherId: A-8371-2014
119071 Москва, Ленинский просп., 31, корп. 4

References

  1. Hanne Flåten Andersen. Current and future trends within lithium-ion battery chemistry. BATMAN webinar (May 10, 2021), pp. 5. Available at: https://www.eydecluster.com/media/24747/210510_batman_webinar_ife.pdf (accessed June 18, 2023).
  2. Grey C. P., Hall D. S. Prospects for lithium-ion batteries and beyond – a 2030 vision. Nat. Commun., 2020, vol. 11, pp. 6279–6282. https://doi.org/10.1038/s41467-020-19991-4
  3. Zubi G. Dufo-López R., Carvalho M., Pasaoglu G. The lithium-ion battery: State of the art and future perspectives. Renewable Sustainable Energy Rev., 2018, vol. 89, pp. 292–308. https://doi.org/10.1016/j.rser.2018.03.002
  4. Kim T., Song W., Son D.-Y., Ono L. K., Qi Y. Lithium-ion batteries: Outlook on present, future, and hybridized technologies. J. Mater. Chem. A, 2019, vol. 7, pp. 2942–2964. https://doi.org/10.1039/c8ta10513h
  5. Qian J., Liu L., Yang J., Li S., Wang X., Zhuang H. L., Lu Y. Electrochemical surface passivation of LiCoO2 particles at ultrahigh voltage and its applications in lithium-based batteries. Nat. Commun., 2018, vol. 9, pp. 4918–4928. https://doi.org/10.1038/s41467-018-07296-6
  6. Kalluri S., Yoon M., Jo M., Park S., Myeong S., Kim J., Dou S. X., Guo Z., Cho J. Surface Engineering Strategies of Layered LiCoO2 Cathode Material to Realize High-Energy and High-Voltage Li-Ion Cells. Adv. Energy Mater., 2016, vol. 7, article no. 1601507. https://doi.org/10.1002/aenm.201601507
  7. Kong J.-Z., Xu L.-P., Wang C.-L., Jiang Y.-X., Cao Y.-Q., Zhou F. Facile coating of conductive poly(vinylidene fluoride-trifluoroethylene) copolymer on Li1.2Mn0.54Ni0.13Co0.13O2 as a high electrochemical performance cathode for Li-ion battery. J. Alloys Compd., 2017, vol. 719, pp. 401–410. https://doi.org/10.1016/j.jallcom.2017.05.184
  8. Zhu W., Huang X., Liu T., Xie Z., Wang Y., Tian K., Bu L., Wang H., Gao L., Zhao J. Ultrathin Al2O3 Coating on LiNi0.8Co0.1Mn0.1O2 Cathode Material for Enhanced Cycleability at Extended Voltage Ranges. Coatings, 2019, vol. 9, article no. 92. https://doi.org/10.3390/coatings9020092
  9. Weigel T., Schipper F., Erickson E. M., Susai F. A., Markovsky B., Aurbach D. Structural and Electrochemical Aspects of LiNi0.8Co0.1Mn0.1O2 Cathode Materials Doped by Various Cations. ACS Energy Lett., 2019, vol. 4, pp. 508–516. https://doi.org/10.1021/acsenergylett.8b02302
  10. Zhong W. W., Huang J., Liang S., Liu J., Li Y., Cai G., Jiang Y., Liu J. New Prelithiated V2O5 Superstructure for Lithium-Ion Batteries with Long Cycle Life and High Power. ACS Energy Lett., 2020, vol. 5, pp. 31–38. https://doi.org/10.1021/acsenergylett.9b02048
  11. Fan X., Hu E., Ji X., Zhu Y., Han F., Hwang S., Liu J., Bak S., Ma Z., Gao T., Liou S., Bai J., Yang X.-Q., Mo Y., Xu K., Su D., Wang C. High energy-density and reversibility of iron fluoride cathode enabled via an intercalation-extrusion reaction. Nat. Commun., 2018, vol. 9, pp. 2324–2335. https://doi.org/10.1038/s41467-018-04476-2
  12. Ni Q., Zheng L., Bai Y., Liu T., Ren H., Xu H., Wu C., Lu J. An Extremely Fast Charging Li3V2(PO4)3 Cathode at a 4.8 V Cutoff Voltage for Li-Ion Batteries. ACS Energy Lett., 2020, vol. 5, pp. 1763–1770. https://dx.doi.org/10.1021/acsenergylett.0c00702
  13. Ivanishchev A. V., Ushakov A. V., Ivanishcheva I. A., Churikov A. V., Mironov A. V., Fedotov S. S., Khasanova N. R., Antipov E. V. Structural and electrochemical study of fast Li diffusion in Li3V2(PO4)3-based electrode material. Electrochim. Acta, 2017, vol. 230, pp. 479–491. https://doi.org/10.1016/j.electacta.2017.02.009
  14. Yuan M., Liu H., Ran F. Fast-charging cathode materials for lithium & sodium ion batteries. Mater. Today, 2023, vol. 63, pp. 360–379. https://doi.org/10.1016/j.mattod.2023.02.007
  15. Lu K., Hu Z., Ma J., Ma H., Dai L., Zhang J. A rechargeable iodine-carbon battery that exploits ion intercalation and iodine redox chemistry. Nat. Commun., 2017, vol. 8, pp. 527–536. https://doi.org/10.1038/s41467-017-00649-7
  16. Wu C., Hu M., Yan X., Shan G., Liu J., Yang J. Azo-linked covalent triazine-based framework as organic cathodes for ultrastable capacitor-type lithium-ion batteries. Energy Storage Mater., 2021, vol. 36, pp. 347–354. https://doi.org/10.1016/j.ensm.2021.01.016
  17. Zhang X., Zhou W., Zhang M., Yang Z., Huang W. Superior performance for lithium-ion battery with organic cathode and ionic liquid electrolyte. J. Energy Chem., 2021, vol. 52, pp. 28–32. https://doi.org/10.1016/j.jechem.2020.04.053
  18. Yu Q., Tang W., Hu Y., Gao J., Wang M., Liu S., Lai H., Xu L., Fan C. Novel low-cost, high-energy-density (>700 Wh⋅kg−1) Li-rich organic cathodes for Li-ion batteries. Chem. Eng. J., 2021, vol. 415, article no. 128509. https://doi.org/10.1016/j.cej.2021.128509
  19. Slesarenko A. A., Baymuratova G. R., Yakuschenko I. K., Tulibaeva G. Z., Vasil’ev S. G., Yudina A. V., Troshin P. A., Shestakov A. F., Yarmolenko O. V. New organic electrode materials for lithium batteries produced by condensation of cyclohexanehexone with p-phenylenediamine. Synth. Met., 2022, vol. 289, article no. 117113. https://doi.org/10.1016/j.synthmet.2022.117113
  20. Gu Y., Yang S., Zhu G., Yuan Y., Qu Q., Wang Y., Zheng H. The effects of cross-linking cations on the electrochemical behavior of silicon anodes with alginate binder. Electrochim. Acta, 2018, vol. 269, pp. 405–414. https://doi.org/10.1016/j.electacta.2018.02.168
  21. Yao Y., McDowell M. T., Ryu I., Wu H., Liu N., Hu L., Nix W. D., Cui Y. Interconnected Silicon Hollow Nanospheres for Lithium-Ion Battery Anodes with Long Cycle Life. Nano Lett., 2011, vol. 11, pp. 2949–2954. https://doi.org/10.1021/nl201470j
  22. Wu H., Yu G., Pan L., Liu N., McDowell M. T., Bao Z., Cui Y. Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nat Commun., 2013, vol. 4, pp. 1943–1948. https://doi.org/10.1038/ncomms2941
  23. Jia H., Zheng J., Song J., Luo L., Yi R., Estevez L., Zhao W., Patel R., Li X., Zhang J.-G. A novel approach to synthesize micrometer-sized porous silicon as a high performance anode for lithium-ion batteries. Nano Energy, 2018, vol. 50, pp. 589–597. https://doi.org/10.1016/j.nanoen.2018.05.048
  24. He D., Li P., Wang W., Wan Q., Zhang J., Xi K., Ma X., Liu Z., Zhang L., Qu X. Collaborative Design of Hollow Nanocubes, In Situ Cross-Linked Binder, and Amorphous Void@SiOx@C as a Three-Pronged Strategy for Ultrastable Lithium Storage. Small, 2019, vol. 15, article no. 1905736. https://doi.org/10.1002/smll.201905736
  25. Wu H., Chan G., Choi J. W., Ryu I., Yao Y., McDowell M. T., Lee S. W., Jackson A., Yang Y., Hu L., Cui Y. Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat. Nanotechnol., 2012, vol. 7, pp. 310–315. https://doi.org/10.1038/NNAN~O.2012.35
  26. Kulova T. L., Skundin A. M., Gavrilin I. M. Electrodes of Germanium and Germanium Phosphide Nanowires in Lithium-Ion and Sodium-Ion Batteries (A Review). Russ. J. Electrochem., 2022, vol. 58, pp. 855–868. https://doi.org/10.1134/S1023193522100081
  27. Wu S., Han C., Iocozzia J., Lu M., Ge R., Xu R., Lin Z. Germanium-Based Nanomaterials for Rechargeable Batteries. Angew. Chem. Int. Ed., 2016, vol. 55, no. 28, pp. 7898–7922. https://doi.org/10.1002/anie.201509651
  28. Klavetter K. C., Wood S. M., Lin Y.-M., Snider J. L., Davy N. C., Chockla A. M., Romanovicz D. K., Korgel B. A., Lee J.-W., Heller A., Mullins C. B. A high-rate germanium-particle slurry cast Li-ion anode with high Coulombic efficiency and long cycle life. J. Power Sources, 2013, vol. 238, pp. 123–136. https://doi.org/10.1016/j.jpowsour.2013.02.091
  29. Gavrilin I. M., Kudryashova Yu. O., Kuz’mina A. A., Kulova T. L., Skundin A. M., Emets V. V., Volkov R. L., Dronov A. A., Borgardt N. I., Gavrilov S. A. High-rate and low-temperature performance of germanium nanowires anode for lithium-ion batteries. J. Electroanalyt. Chem., 2021, vol. 888, article no. 115209. https://doi.org/10.1016/j.jelechem.2021.115209
  30. Kulova T. L., Skundin A. M. Renaissance of lithium electrode. Electrochemical Energetics, 2023, vol. 23, no. 2, pp. 57–79 (in Russian). https://doi.org/10.18500/1608-4039-2023-23-2-57-79
  31. Heubner C., Maletti S., Auer H. Hüttl J., Voigt K., Lohrberg O., Nikolowski K., Partsch M., Michaelis A. From Lithium-Metal toward Anode-Free Solid-State Batteries: Current Developments, Issues, and Challenges. Adv. Funct. Mater., 2021, vol. 31, article no. 2106608. https://doi.org/10.1002/adfm.202106608
  32. Yang Y., Davies D. M., Yin Y., Borodin O., Lee J. Z., Fang C., Olguin M., Zhang Y., Sablina E. S., Wang X., Rustomji C. S., Meng Y. S. High-Efficiency Lithium-Metal Anode Enabled by Liquefied Gas Electrolytes. Joule, 2019, vol. 3, pp. 1986–2000. https://doi.org/10.1016/j.joule.2019.06.008
  33. Saal A., Hagemann T., Schubert U. S. Polymers for Battery Applications–Active Materials, Membranes, and Binders. Adv. Energy Mater., 2020, vol. 10, article no. 2001984.
  34. Voropaeva D. Yu., Novikova S. A., Kulova T. L., Yaroslavtsev A. B. Conductivity of Nafion-117 membranes intercalated by polar aprotonic solvents. Ionics, 2018, vol. 24, pp. 1685–1692. https://doi.org/10.1007/s11581-017-2333-1
  35. Verkhneufaleiskii zavod Uralelement (Verkhneufalei plant Uralelement. Site). Available at: https://www.uralelement.ru/ (accessed June 18, 2023).
  36. JSC “Energiya”. (Site). Available at: https://www.jsc-energiya.com/ (accessed June 18, 2023).
  37. Rosatom started construction of Russia’s first “gigafactory” of energy storage devices in the Kaliningrad region. Nauchno-delovoi portal “Atomnaya energiya 2.0” (Scientific and business portal “Nuclear Energy 2.0”. Site). Available at: https://www.atomic-energy.ru/news/2022/10/14/129293 (accessed June 18, 2023).

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».