Stability of approximation in classical problems of geometric approximation theory

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Approximative compactness type properties in various problems of $\min$- and $\max$-approximation are studied.
This leads naturally to “special points” of approximation theory — these being the spaces characterizable in approximative compactness terms for various classical problems of approximation. These “special points” are CLUR–spaces, Day–Oshman spaces, Anderson–Megginson spaces, CMLUR-spaces, and AT-spaces.

作者简介

Alexey Alimov

Lomonosov Moscow State University; Saint Petersburg State University

Email: alexey.alimov-msu@yandex.ru, alexey.alimov@gmail.com
ORCID iD: 0000-0001-8806-1593
Scopus 作者 ID: 7007117638
Researcher ID: M-3902-2015
Doctor of physico-mathematical sciences, Head Scientist Researcher

Igor' Tsar'kov

Lomonosov Moscow State University; Moscow Center for Fundamental and Applied Mathematics

Email: tsar@mech.math.msu.su
ORCID iD: 0000-0002-5943-3711
Scopus 作者 ID: 6602443197
Doctor of physico-mathematical sciences, Professor

参考

  1. A. R. Alimov, I. G. Tsar'kov, Geometric approximation theory, Springer Monogr. Math., Springer, Cham, 2021, xxi+508 pp.
  2. S. Cobzaş, “Geometric properties of Banach spaces and the existence of nearest and farthest points”, Abstr. Appl. Anal., 2005:3 (2005), 259–285
  3. A. R. Alimov, I. G. Tsar'kov, “Connectedness and approximative properties of sets in asymmetric spaces”, Filomat, 38:9 (2024), 3243–3259
  4. I. G. Tsar'kov, “Convexity of $delta$-suns and $gamma$-suns in asymmetric spaces”, Russ. J. Math. Phys., 31:2 (2024), 325–334
  5. B. B. Panda, O. P. Kapoor, “A generalization of local uniform convexity of the norm”, J. Math. Anal. Appl., 52:2 (1975), 300–308
  6. A. A. Astaneh, “Completeness of normed linear spaces admitting centers”, J. Austral. Math. Soc. Ser. A, 39:3 (1985), 360–366
  7. F. Deutsch, J. M. Lambert, “On continuity of metric projections”, J. Approx. Theory, 29:2 (1980), 116–131
  8. A. R. Alimov, I. G. Tsar'kov, “Max-solar properties of sets in normed and asymmetrically normed spaces”, J. Convex Anal., 30:1 (2023), 159–174
  9. Xi Nian Fang, Jian Hua Wang, “Convexity and the continuity of metric projections”, Math. Appl. (Wuhan), 14:1 (2001), 47–51
  10. A. J. Guirao, V. Montesinos, “A note in approximative compactness and continuity of metric projections in Banach spaces”, J. Convex Anal., 18:2 (2011), 397–401
  11. J. P. Revalski, N. V. Zhivkov, “Best approximation problems in compactly uniformly rotund spaces”, J. Convex Anal., 19:4 (2012), 1153–1166
  12. R. E. Megginson, The semi-Kadec–Klee condition and nearest-point properties of sets in normed linear spaces, Ph.D. thesis, Univ. of Illinois, Urbana–Champaign, IL, 1984, 135 pp.
  13. P. Bandyopadhyay, Yongjin Li, Bor-Luh Lin, D. Narayana, “Proximinality in Banach spaces”, J. Math. Anal. Appl., 341:1 (2008), 309–317
  14. S. Dutta, P. Shunmugaraj, “Weakly compactly LUR Banach spaces”, J. Math. Anal. Appl., 458:2 (2018), 1203–1213
  15. K. W. Anderson, Midpoint local uniform convexity, and other geometric properties of Banach spaces, Ph.D. thesis, Univ. of Illinois, Urbana–Champaign, IL, 1960, 52 pp.
  16. R. E. Megginson, An introduction to Banach space theory, Grad. Texts in Math., 183, Springer-Verlag, New York, 1998, xx+596 pp.
  17. Z. H. Zhang, C. Y. Liu, “Convexities and existence of the farthest point”, Abstr. Appl. Anal., 2011, 139597, 9 pp.
  18. I. G. Tsar'kov, “Local and global suns”, Russ. J. Math. Phys., 31:4 (2024), 765–773

补充文件

附件文件
动作
1. JATS XML

版权所有 © Alimov A.R., Tsar'kov I.G., 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».