On $T$-maps and ideals of antiderivatives of hypersurface singularities

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Mather–Yau's theorem leads to an extensive study about moduli algebras of isolated hypersurface singularities. In this paper, the Tjurina ideal is generalized as $T$-principal ideals of certain $T$-maps for Noetherian algebras. Moreover, we introduce the ideal of antiderivatives of a $T$-map, which creates many new invariants. Firstly, we compute two new invariants associated with ideals of antiderivatives for ADE singularities and conjecture a general pattern of polynomial growth of these invariants.Secondly, the language of $T$-maps is applied to generalize the well-known theorem that the Milnor number of a semi quasi-homogeneous singularity is equal to that of its principal part. Finally, we use the $T$- fullness and $T$-dependence conditions to determine whether an ideal is a $T$-principal ideal and provide a constructive way of giving a generator of a $T$-principal ideal. As a result, the problem about reconstruction of a hypersurface singularitiy from its generalized moduli algebras is solved. It generalizes the results of Rodrigues in the cases of the $0$th and $1$st moduli algebra, which inspired our solution.Bibliography: 24 titles.

作者简介

Quan Shi

Department of Mathematical Sciences, School of Sciences, Tsinghua University; Tsinghua University

编辑信件的主要联系方式.
Email: shiq20@mails.tsinghua.edu.cn

Stephen Yau

Beijing Institute of Mathematical Sciences and Applications; Department of Mathematical Sciences, School of Sciences, Tsinghua University

Email: yau@uic.edu

PhD, Professor

Huaiqing Zuo

Department of Mathematical Sciences, School of Sciences, Tsinghua University

Email: hqzuo@mail.tsinghua.edu.cn

参考

  1. В. И. Арнольд, “Критические точки гладких функций и их нормальные формы”, УМН, 30:5(185) (1975), 3–65
  2. М. Атья, И. Макдональд, Введение в коммутативную алгебру, Мир, М., 1972, 160 с.
  3. J. Àlvarez Montaner, J. Jeffries, L. Nuñez-Betancourt, “Bernstein–Sato polynomials in commutative algebra”, Commutative algebra, Springer, Cham, 2021, 1–76
  4. Y. Boubakri, G.-M. Greuel, T. Markwig, “Normal forms of hypersurface singularities in positive characteristic”, Mosc. Math. J., 11:4 (2011), 657–683
  5. Bingyi Chen, N. Hussain, S. S.-T. Yau, Huaiqing Zuo, “Variation of complex structures and variation of Lie algebras II: new Lie algebras arising from singularities”, J. Differential Geom., 115:3 (2020), 437–473
  6. A. Dimca, R. Gondim, G. Ilardi, “Higher order Jacobians, Hessians and Milnor algebras”, Collect. Math., 71:3 (2020), 407–425
  7. D. Eisenbud, Commutative algebra. With a view toward algebraic geometry, Graduate Texts in Math., 150, Springer-Verlag, New York, 1995, xvi+785 pp.
  8. R. Epure, M. Schulze, “Hypersurface singularities with monomial Jacobian ideal”, Bull. Lond. Math. Soc., 54:3 (2022), 1067–1081
  9. G.-M. Greuel, C. Lossen, E. Shustin, Introduction to singularities and deformations, Springer Monogr. Math., Springer, Berlin, 2007, xii+471 pp.
  10. G.-M. Greuel, C. Lossen, E. Shustin, Corrections and additions to the book “Introduction to singularities and deformations”, preprint, 2023
  11. Р. Хартсхорн, Алгебраическая геометрия, Мир, М., 1981, 600 с.
  12. N. Hussain, Zhiwen Liu, S. S.-T. Yau, Huaiqing Zuo, “$k$th Milnor numbers and $k$th Tjurina numbers of weighted homogeneous singularities”, Geom. Dedicata, 217:2 (2023), 34, 35 pp.
  13. N. Hussain, Guorui Ma, S. S.-T. Yau, Huaiqing Zuo, “Higher Nash blow-up local algebras of singularities and its derivation Lie algebras”, J. Algebra, 618 (2023), 165–194
  14. N. Hussain, S. S.-T. Yau, Huaiqing Zuo, “Inequality conjectures on derivations of local $k$th Hessain algebras associated to isolated hypersurface singularities”, Math. Z., 298:3-4 (2021), 1813–1829
  15. J. Igusa, An introduction to the theory of local zeta functions, AMS/IP Stud. Adv. Math., 14, Amer. Math. Soc., Providence, RI; Int. Press, Cambridge, MA, 2000, xii+232 pp.
  16. H. Matsumura, Commutative algebra, Math. Lecture Note Ser., 56, 2nd ed., Benjamin/Cummings Publishing Co., Inc., Reading, MA, 1980, xv+313 pp.
  17. J. N. Mather, S. S.-T. Yau, “Classification of isolated hypersurface singularities by their moduli algebras”, Invent. Math., 69:2 (1982), 243–251
  18. Guorui Ma, S. S.-T. Yau, Huaiqing Zuo, “$k$-th singular locus moduli algebras of singularities and their derivation Lie algebras”, J. Math. Phys., 64:3 (2023), 031701, 13 pp.
  19. J. H. Olmedo Rodrigues, “On Tjurina ideals of hypersurface singularities”, J. Commut. Algebra, 15:2 (2023), 261–274
  20. J. H. Olmedo Rodrigues, “Reconstruction of a hypersurface singularity from its moduli algebra”, Res. Math. Sci., 11:1 (2024), 12, 15 pp.
  21. J. J. Rotman, Advanced modern algebra, Grad. Stud. Math., 114, 2nd ed., Amer. Math. Soc., Providence, RI, 2010, xvi+1008 pp.
  22. D. van Straten, The spectrum of hypersurface singularities, 2020
  23. S. S.-T. Yau, “A necessary and sufficient condition for a local commutative algebra to be a moduli algebra: weighted homogeneous case”, Complex analytic singularities, Adv. Stud. Pure Math., 8, North-Holland Publishing Co., Amsterdam, 1987, 687–697

补充文件

附件文件
动作
1. JATS XML

版权所有 © Ши Ц., Yau S.S., Цзо Х.T., 2024

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).