On $T$-maps and ideals of antiderivatives of hypersurface singularities

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Mather–Yau's theorem leads to an extensive study about moduli algebras of isolated hypersurface singularities. In this paper, the Tjurina ideal is generalized as $T$-principal ideals of certain $T$-maps for Noetherian algebras. Moreover, we introduce the ideal of antiderivatives of a $T$-map, which creates many new invariants. Firstly, we compute two new invariants associated with ideals of antiderivatives for ADE singularities and conjecture a general pattern of polynomial growth of these invariants.Secondly, the language of $T$-maps is applied to generalize the well-known theorem that the Milnor number of a semi quasi-homogeneous singularity is equal to that of its principal part. Finally, we use the $T$- fullness and $T$-dependence conditions to determine whether an ideal is a $T$-principal ideal and provide a constructive way of giving a generator of a $T$-principal ideal. As a result, the problem about reconstruction of a hypersurface singularitiy from its generalized moduli algebras is solved. It generalizes the results of Rodrigues in the cases of the $0$th and $1$st moduli algebra, which inspired our solution.Bibliography: 24 titles.

Авторлар туралы

Quan Shi

Department of Mathematical Sciences, School of Sciences, Tsinghua University; Tsinghua University

Хат алмасуға жауапты Автор.
Email: shiq20@mails.tsinghua.edu.cn

Stephen Yau

Beijing Institute of Mathematical Sciences and Applications; Department of Mathematical Sciences, School of Sciences, Tsinghua University

Email: yau@uic.edu

PhD, Professor

Huaiqing Zuo

Department of Mathematical Sciences, School of Sciences, Tsinghua University

Email: hqzuo@mail.tsinghua.edu.cn

Әдебиет тізімі

  1. В. И. Арнольд, “Критические точки гладких функций и их нормальные формы”, УМН, 30:5(185) (1975), 3–65
  2. М. Атья, И. Макдональд, Введение в коммутативную алгебру, Мир, М., 1972, 160 с.
  3. J. Àlvarez Montaner, J. Jeffries, L. Nuñez-Betancourt, “Bernstein–Sato polynomials in commutative algebra”, Commutative algebra, Springer, Cham, 2021, 1–76
  4. Y. Boubakri, G.-M. Greuel, T. Markwig, “Normal forms of hypersurface singularities in positive characteristic”, Mosc. Math. J., 11:4 (2011), 657–683
  5. Bingyi Chen, N. Hussain, S. S.-T. Yau, Huaiqing Zuo, “Variation of complex structures and variation of Lie algebras II: new Lie algebras arising from singularities”, J. Differential Geom., 115:3 (2020), 437–473
  6. A. Dimca, R. Gondim, G. Ilardi, “Higher order Jacobians, Hessians and Milnor algebras”, Collect. Math., 71:3 (2020), 407–425
  7. D. Eisenbud, Commutative algebra. With a view toward algebraic geometry, Graduate Texts in Math., 150, Springer-Verlag, New York, 1995, xvi+785 pp.
  8. R. Epure, M. Schulze, “Hypersurface singularities with monomial Jacobian ideal”, Bull. Lond. Math. Soc., 54:3 (2022), 1067–1081
  9. G.-M. Greuel, C. Lossen, E. Shustin, Introduction to singularities and deformations, Springer Monogr. Math., Springer, Berlin, 2007, xii+471 pp.
  10. G.-M. Greuel, C. Lossen, E. Shustin, Corrections and additions to the book “Introduction to singularities and deformations”, preprint, 2023
  11. Р. Хартсхорн, Алгебраическая геометрия, Мир, М., 1981, 600 с.
  12. N. Hussain, Zhiwen Liu, S. S.-T. Yau, Huaiqing Zuo, “$k$th Milnor numbers and $k$th Tjurina numbers of weighted homogeneous singularities”, Geom. Dedicata, 217:2 (2023), 34, 35 pp.
  13. N. Hussain, Guorui Ma, S. S.-T. Yau, Huaiqing Zuo, “Higher Nash blow-up local algebras of singularities and its derivation Lie algebras”, J. Algebra, 618 (2023), 165–194
  14. N. Hussain, S. S.-T. Yau, Huaiqing Zuo, “Inequality conjectures on derivations of local $k$th Hessain algebras associated to isolated hypersurface singularities”, Math. Z., 298:3-4 (2021), 1813–1829
  15. J. Igusa, An introduction to the theory of local zeta functions, AMS/IP Stud. Adv. Math., 14, Amer. Math. Soc., Providence, RI; Int. Press, Cambridge, MA, 2000, xii+232 pp.
  16. H. Matsumura, Commutative algebra, Math. Lecture Note Ser., 56, 2nd ed., Benjamin/Cummings Publishing Co., Inc., Reading, MA, 1980, xv+313 pp.
  17. J. N. Mather, S. S.-T. Yau, “Classification of isolated hypersurface singularities by their moduli algebras”, Invent. Math., 69:2 (1982), 243–251
  18. Guorui Ma, S. S.-T. Yau, Huaiqing Zuo, “$k$-th singular locus moduli algebras of singularities and their derivation Lie algebras”, J. Math. Phys., 64:3 (2023), 031701, 13 pp.
  19. J. H. Olmedo Rodrigues, “On Tjurina ideals of hypersurface singularities”, J. Commut. Algebra, 15:2 (2023), 261–274
  20. J. H. Olmedo Rodrigues, “Reconstruction of a hypersurface singularity from its moduli algebra”, Res. Math. Sci., 11:1 (2024), 12, 15 pp.
  21. J. J. Rotman, Advanced modern algebra, Grad. Stud. Math., 114, 2nd ed., Amer. Math. Soc., Providence, RI, 2010, xvi+1008 pp.
  22. D. van Straten, The spectrum of hypersurface singularities, 2020
  23. S. S.-T. Yau, “A necessary and sufficient condition for a local commutative algebra to be a moduli algebra: weighted homogeneous case”, Complex analytic singularities, Adv. Stud. Pure Math., 8, North-Holland Publishing Co., Amsterdam, 1987, 687–697

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Ши Ц., Yau S.S., Цзо Х.T., 2024

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).