Isotopes of alternative algebras of characteristic different from $3$

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

We study homotopes of alternative algebras over an algebraically closed field of characteristic different from $3$. We prove an analogue of Albert's theorem on isotopes of associative algebras: in the class of finite-dimensional unital alternative algebras every isotopy is an isomorphism. We also prove that every $(a,b)$-homotope of a unital alternative algebra preserves the identities of the original algebra. We also obtain results on the structure of isotopes of various simple algebras, in particular, Cayley–Dixon algebras.

Авторлар туралы

Sergey Pchelintsev

Financial University under the Government of the Russian Federation; Moscow Center for Fundamental and Applied Mathematics

Email: pchelinzev@mail.ru
Doctor of physico-mathematical sciences, Professor

Әдебиет тізімі

  1. A. A. Albert, “Non-associative algebras. I. Fundamental concepts and isotopy”, Ann. of Math. (2), 43:4 (1942), 685–707
  2. R. D. Schafer, “Alternative algebras over an arbitrary field”, Bull. Amer. Math. Soc., 49:8 (1943), 549–555
  3. K. McCrimmon, “Homotopes of alternative algebras”, Math. Ann., 191:4 (1971), 253–262
  4. M. Babikov, “Isotopy and identities in alternative algebras”, Proc. Amer. Math. Soc., 125:6 (1997), 1571–1575
  5. С. В. Пчелинцев, “Изотопы первичных $(-1,1)$- и йордановых алгебр”, Алгебра и логика, 49:3 (2010), 388–423
  6. V. I. Glizburg, S. V. Pchelintsev, “Isotopes of simple algebras of arbitrary dimension”, Asian-Eur. J. Math., 2020, 2050108, 19 pp.
  7. N. Jacobson, Structure and representations of Jordan algebras, Amer. Math. Soc. Colloq. Publ., 39, Amer. Math. Soc., Providence, RI, 1968, x+453 pp.
  8. К. А. Жевлаков, А. М. Слинько, И. П. Шестаков, А. И. Ширшов, Кольца, близкие к ассоциативным, Наука, М., 1978, 431 с.
  9. С. В. Пчелинцев, “Первичные альтернативные алгебры, близкие к коммутативным”, Изв. РАН. Сер. матем., 68:1 (2004), 183–206
  10. С. В. Пчелинцев, “Вырожденные альтернативные алгебры”, Сиб. матем. журн., 55:2 (2014), 396–411
  11. С. В. Пчелинцев, “Изотопы альтернативного монстра и алгебры Скосырского”, Сиб. матем. журн., 57:4 (2016), 850–865
  12. A. A. Krylov, S. V. Pchelintsev, “The isotopically simple algebras with a nil-basis”, Comm. Algebra, 48:4 (2020), 1697–1712
  13. R. H. Bruck, “Some results in the theory of linear non-associative algebras”, Trans. Amer. Math. Soc., 56 (1944), 141–199
  14. M. Zorn, “Theorie der alternativen Ringe”, Abh. Math. Sem. Univ. Hamburg, 8:1 (1931), 123–147
  15. R. D. Schafer, “The Wedderburn principal theorem for alternative algebras”, Bull. Amer. Math. Soc., 55:6 (1949), 604–614
  16. R. D. Schafer, An introduction to nonassociative algebras, Pure Appl. Math., 22, New York–London, Academic Press, 1966, x+166 pp.
  17. A. A. Albert, “The structure of right alternative algebras”, Ann. of Math. (2), 59:3 (1954), 408–417
  18. И. М. Михеев, “О простых правоальтернативных кольцах”, Алгебра и логика, 16:6 (1977), 682–710
  19. В. Г. Скосырский, “Правоальтернативные алгебры”, Алгебра и логика, 23:2 (1984), 185–192
  20. С. В. Пчелинцев, “Коммутаторные тождества гомотопов $(-1,1)$-алгебр”, Сиб. матем. журн., 54:2 (2013), 417–435

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pchelintsev S.V., 2020

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).