Разложение Наттолла на трехлистном комплексном торе

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

С помощью эллиптических функций Вейерштрасса мы исследуем задачу о разложении Наттолла трехлистной римановой поверхности рода $1$, связанном с некоторым абелевым интегралом на этой поверхности. Данное разложение имеет важное применение при исследовании диагональных аппроксимаций Эрмита–Паде.Библиография: 15 наименований.

Об авторах

Семен Рафаилович Насыров

Казанский (Приволжский) федеральный университет

Email: snasyrov@kpfu.ru
ORCID iD: 0000-0002-3399-0683
SPIN-код: 8500-0208
Scopus Author ID: 10244797600
ResearcherId: L-4036-2015
доктор физико-математических наук, профессор

Список литературы

  1. H. Stahl, “The structure of extremal domains associated with an analytic function”, Complex Variables Theory Appl., 4:4 (1985), 339–354
  2. H. Stahl, “Orthogonal polynomials with complex-valued weight function. I”, Constr. Approx., 2:1 (1986), 225–240
  3. J. Nuttall, “Asymptotics of diagonal Hermite–Pade polynomials”, J. Approx. Theory, 42:4 (1984), 299–386
  4. A. V. Komlov, “Polynomial Hermite–Pade $m$-system and reconstruction of the values of algebraic functions”, Extended abstracts fall 2019–spaces of analytic functions: approximation, interpolation, sampling, Trends Math. Res. Perspect. CRM Barc., 12, Birkhäuser/Springer, Cham, 2021, 113–121
  5. Н. Р. Икономов, С. П. Суетин, “Структура наттолловского разбиения для некоторого класса четырехлистных римановых поверхностей”, Тр. ММО, 83, № 1, МЦНМО, М., 2022, 37–61
  6. А. В. Комлов, “Полиномиальная $m$-система Эрмита–Паде для мероморфных функций на компактной римановой поверхности”, Матем. сб., 212:12 (2021), 40–76
  7. А. В. Комлов, Р. В. Пальвелев, С. П. Суетин, Е. М. Чирка, “Аппроксимации Эрмита–Паде для мероморфных функций на компактной римановой поверхности”, УМН, 72:4(436) (2017), 95–130
  8. С. П. Суетин, “О существовании трехлистной поверхности Наттолла в некотором классе бесконечнозначных аналитических функций”, УМН, 74:2(446) (2019), 187–188
  9. А. И. Аптекарев, Д. Н. Туляков, “Абелев интеграл Наттолла на римановой поверхности кубического корня многочлена третьей степени”, Изв. РАН. Сер. матем., 80:6 (2016), 5–42
  10. Н. И. Ахиезер, Элементы теории эллиптических функций, 2-е изд., Наука, М., 1970, 304 с.
  11. Ф. Г. Авхадиев, Л. А. Аксентьев, “Основные результаты в достаточных условиях однолистности аналитических функций”, УМН, 30:4(184) (1975), 3–60
  12. N. Papamichael, N. Stylianopoulos, Numerical conformal mapping. Domain decomposition and the mapping of quadrilaterals, World Sci. Publ., Hackensack, NJ, 2010, xii+229 pp.
  13. K. Strebel, Quadratic differentials, Ergeb. Math. Grenzgeb. (3), 5, Springer-Verlag, Berlin, 1984, xii+184 pp.
  14. A. Vasil'ev, Moduli of families of curves for conformal and quasiconformal mappings, Lecture Notes in Math., 1788, Springer-Verlag, Berlin, 2002, x+211 pp.
  15. Дж. Дженкинс, Однолистные функции и конформные отображения, ИЛ, М., 1962, 265 с.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Насыров С.Р., 2024

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).