Rational points of algebraic varieties: a homotopical approach

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

This article, dedicated to the 100-th anniversary of I. R. Shafarevich, is a survey of techniques of homotopical algebra, applied to the problem of distribution of rational points on algebraic varieties.We due to I. R. Shafarevich, jointly with J. Tate, one of the breakthrough discoveries in this domain: construction of the so-called Shafarevich–Tate groups and the related obstructions to the existence of rational points. Later it evolved into the theory of Brauer–Manin obstructions.Here we focus on some facets of the later developments in Diophantine geometry: the study of the distribution of rational points on them.More precisely, we show how the definition of accumulating subvarieties, based upon counting the number of points whose height is bounded by varying $H$, can be encoded by a special class of categories in such a way that the arithmetical invariants of varieties are translated into homotopical invariants of objects and morphisms of these categories.The central role in this study is played by the structure of an assembler (I. Zakharevich) in general, and a very particular case of it, anassembler on the family of unions of half-open intervals $(a,b]$ with rational ends.

Sobre autores

Yuri Manin

Max-Planck-Institut für Mathematik

Doctor of physico-mathematical sciences

Bibliografia

  1. V. V. Batyrev, Yu. I. Manin, “Sur le nombre des points rationnels de hauteur borne des varietes algebriques”, Math. Ann., 286:1-3 (1990), 27–43
  2. E. Peyre, “Les points rationnels”, Gaz. Math., 159 (2019), 13–22
  3. Yu. I. Manin, M. N. Smirnov, “On the derived category of $overline{M}_{0,n}$”, Изв. РАН. Сер. матем., 77:3 (2013), 93–108
  4. Yu. I. Manin, M. Smirnov, “Towards motivic quantum cohomology of $overline{M}_{0,S}$”, Proc. Edinb. Math. Soc. (2), 57:1 (2014), 201–230
  5. A. Chambert-Loir, Lectures on height zeta functions: at the confluence of algebraic geometry, algebraic number theory, and analysis
  6. Yu. Manin, M. Marcolli, Homotopy spectra and Diophantine equations, to be published in a volume, ed. by C.-T. Yau
  7. M. Kashiwara, P. Schapira, Categories and sheaves, Grundlehren Math. Wiss., 332, Springer-Verlag, Berlin, 2006, x+497 pp.
  8. I. Zakharevich, “The $K$-theory of assemblers”, Adv. Math., 304 (2017), 1176–1218
  9. E. H. Spanier, J. H. C. Whitehead, “A first approximation to homotopy theory”, Proc. Nat. Acad. Sci. U.S.A., 39:7 (1953), 655–660
  10. G. Segal, “Categories and cohomology theories”, Topology, 13:3 (1974), 293–312
  11. M. Lydakis, “Smash products and $Gamma$-spaces”, Math. Proc. Cambridge Philos. Soc., 126:2 (1999), 311–328
  12. D. Corwin, T. Schlank, Brauer and etale homotopy obstructions to rational points on open covers
  13. E. Peyre, Beyond heights: slopes and distribution of rational points
  14. W. Sawin, Freeness alone is insufficient for Manin–Peyre
  15. V. V. Batyrev, Yu. Tschinkel, “Manin's conjecture for toric varieties”, J. Algebraic Geom., 7:1 (1998), 15–53
  16. J. Franke, Yu. I. Manin, Yu. Tschinkel, “Rational points of bounded height on Fano varieties”, Invent. Math., 95:2 (1989), 421–435
  17. B. Poonen, Rational points on varieties, Grad. Stud. Math., 186, Amer. Math. Soc., Providence, RI, 2017, xv+337 pp.
  18. Sh. Tanimoto, An introduction to Geometric Manin's conjecture

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Manin Y.I., 2023

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).