Convergence to stationary non-equilibrium states for Klein–Gordon equations

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We consider Klein–Gordon equations in $\mathbb{R}^d$, $d\ge2$, with constant or variable coefficients and study the Cauchy problem with random initial data. We investigate the distribution $\mu_t$ of a random solution at moments of time $t\in\mathbb{R}$. We prove the convergence of correlation functions of the measure $\mu_t$ to a limit as $t\to\infty$. The explicit formulae for the limiting correlation functions and the energy current density (in mean) are obtained in terms of the initial covariance. Furthermore, we prove the weak convergence of $\mu_t$ to a limiting measure as $t\to\infty$. We apply these results to the case when the initial random function has the Gibbs distribution with different temperatures in some infinite “parts” of the space. In this case, we find states in which the limiting energy current density does not vanish. Thus, for the model being studied, we construct a new class of stationary non-equilibrium states.

Sobre autores

Tatiana Dudnikova

Keldysh Institute of Applied Mathematics of Russian Academy of Sciences

Email: dudnik@elsite.ru
Doctor of physico-mathematical sciences, Associate professor

Bibliografia

  1. F. Bonetto, J. L. Lebowitz, L. Rey-Bellet, “Fourier law: a challenge to theorists”, Mathematical physics 2000, Imp. Coll. Press, London, 2000, 128–150
  2. H. Spohn, J. L. Lebowitz, “Stationary non-equilibrium states of infinite harmonic systems”, Comm. Math. Phys., 54:2 (1977), 97–120
  3. J.-P. Eckmann, C.-A. Pillet, L. Rey-Bellet, “Non-equilibrium statistical mechanics of anharmonic chains coupled to two heat baths at different temperatures”, Comm. Math. Phys., 201:3 (1999), 657–697
  4. S. Lepri, R. Livi, A. Politi, “Thermal conduction in classical low-dimensional lattices”, Phys. Rep., 377:1 (2003), 1–80
  5. Thermal transport in low dimensions: from statistical physics to nanoscale heat transfer, Lecture Notes in Phys., 921, ed. S. Lepri, Springer, Cham, 2016, xi+411 pp.
  6. C. Boldrighini, A. Pellegrinotti, L. Triolo, “Convergence to stationary states for infinite harmonic systems”, J. Statist. Phys., 30:1 (1983), 123–155
  7. Т. В. Дудникова, А. И. Комеч, “О двухтемпературной задаче для уравнения Клейна–Гордона”, Теория вероятн. и ее примен., 50:4 (2005), 675–710
  8. T. V. Dudnikova, “Convergence to stationary states and energy current for infinite harmonic crystals”, Russ. J. Math. Phys., 26:4 (2019), 428–453
  9. T. V. Dudnikova, A. I. Komech, E. A. Kopylova, Yu. M. Suhov, “On convergence to equilibrium distribution. I. The Klein–Gordon equation with mixing”, Comm. Math. Phys., 225:1 (2002), 1–32
  10. Б. Р. Вайнберг, “Поведение при больших временах решений уравнения Клейна–Гордона”, Тр. ММО, 30, Изд-во Моск. ун-та, М., 1974, 139–158
  11. Е. А. Копылова, “Стабилизация статистических решений уравнения Клейна–Гордона”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 1986, № 2, 92–95
  12. В. П. Михайлов, Дифференциальные уравнения в частных производных, Наука, М., 1976, 391 с.
  13. Л. Хeрмандер, Анализ линейных дифференциальных операторов с частными производными, т. 3, Псевдодифференциальные операторы, Мир, М., 1987, 696 с.
  14. И. А. Ибрагимов, Ю. В. Линник, Независимые и стационарно связанные величины, Наука, М., 1965, 524 с.
  15. И. П. Корнфельд, Я. Г. Синай, С. В. Фомин, Эргодическая теория, Наука, М., 1980, 384 с.
  16. T. V. Dudnikova, A. I. Komech, H. Spohn, “On a two-temperature problem for wave equation”, Markov Process. Related Fields, 8:1 (2002), 43–80
  17. И. М. Гельфанд, Н. Я. Виленкин, Некоторые применения гармонического анализа. Оснащенные гильбертовы пространства, Обобщенные функции, 4, Физматлит, М., 1961, 472 с.
  18. C. D. Sogge, Fourier integrals in classical analysis, Cambridge Tracts in Math., 105, Cambridge Univ. Press, Cambridge, 1993, x+237 pp.
  19. М. И. Вишик, А. В. Фурсиков, Математические задачи статистической гидромеханики, Наука, М., 1980, 440 с.
  20. V. V. Petrov, Limit theorems of probability theory. Sequences of independent random variables, Oxford Stud. Probab., 4, The Clarendon Press, Oxford Univ. Press, New York, 1995, xii+292 pp.

Declaração de direitos autorais © Дудникова Т.V., 2021

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies