The quasi-algebraic ring of conditions of $\mathbb C^n$

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

An exponential sum is a linear combination of characters of the additive groupof $\mathbb C^n$. We regard $\mathbb{C}^n$ as an analogue of the torus$(\mathbb{C}\setminus0)^n$, exponential sums as analogues of Laurent polynomials,and exponential analytic sets ($\mathrm{EA}$-sets), that is, the sets of common zerosof finite systems of exponential sums, as analogues of algebraic subvarieties of the torus.Using these analogies, we define the intersection number of $\mathrm{EA}$-sets andapply the De Concini–Procesi algorithm to construct the ring of conditions of the correspondingintersection theory. To construct the intersection number and the ring of conditions, weassociate an algebraic subvariety of a multidimensional complex torus with every$\mathrm{EA}$-set and use the methods of tropical geometry. By computing the intersectionnumber of the divisors of arbitrary exponential sums $f_1,…,f_n$, we arrive at a formulafor the density of the $\mathrm{EA}$-set of common zeros of the perturbed system $f_i(z+w_i)$,where the perturbation $\{w_1,…,w_n\}$ belongs to a set of relatively full measurein $\mathbb{C}^{n\times n}$. This formula is analogous to the formula for the numberof common zeros of Laurent polynomials.

About the authors

Boris Yakovlevich Kazarnovskii

Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute)

Email: kazbori@gmail.com
Candidate of physico-mathematical sciences, no status

References

  1. C. De Concini, C. Procesi, “Complete symmetric varieties. II. Intersection theory”, Algebraic groups and related topics (Kyoto/Nagoya, 1983), Adv. Stud. Pure Math., 6, North-Holland, Amsterdam, 1985, 481–513
  2. C. De Concini, “Equivariant embeddings of homogeneous spaces”, Proceedings of the international congress of mathematicians (Berkeley, Calif., 1986), v. 1, Amer. Math. Soc., Providence, RI, 1987, 369–377
  3. Б. Я. Казарновский, А. Г. Хованский, А. И. Эстеров, “Многогранники Ньютона и тропическая геометрия”, УМН, 76:1(457) (2021), 95–190
  4. Б. Я. Казарновский, “Действие комплексного оператора Монжа–Ампера на кусочно линейных функциях и экспоненциальные тропические многообразия”, Изв. РАН. Сер. матем., 78:5 (2014), 53–74
  5. Б. Я. Казарновский, “О действии комплексного оператора Монжа–Ампера на кусочно линейных функциях”, Функц. анализ и его прил., 48:1 (2014), 19–29
  6. I. Itenberg, G. Mikhalkin, E. Shustin, Tropical algebraic geometry, Oberwolfach Semin., 35, 2nd ed., Birkhäuser Verlag, Basel, 2009, x+104 pp.
  7. D. Maclagan, B. Sturmfels, Introduction to tropical geometry, Grad. Stud. Math., 161, Amer. Math. Soc., Providence, RI, 2015, xii+363 pp.
  8. Б. Я. Казарновский, “c-вееры и многогранники Ньютона алгебраических многообразий”, Изв. РАН. Сер. матем., 67:3 (2003), 23–44
  9. Б. Я. Казарновский, “Экспоненциальные аналитические множества”, Функц. анализ и его прил., 31:2 (1997), 15–26
  10. А. Г. Хованский, Малочлены, Библиотека математика, 2, Фазис, М., 1997, xii+217 с.
  11. Б. Я. Казарновский, “О нулях экспоненциальных сумм”, Докл. АН СССР, 257:4 (1981), 804–808
  12. Б. Я. Казарновский, “Многогранники Ньютона и корни систем экспоненциальных сумм”, Функц. анализ и его прил., 18:4 (1984), 40–49
  13. Д. Н. Бернштейн, “Число корней системы уравнений”, Функц. анализ и его прил., 9:3 (1975), 1–4
  14. H. Weyl, “Mean motion”, Amer. J. Math., 60:4 (1938), 889–896
  15. B. Zilber, “Exponential sums equations and the Schanuel conjecture”, J. London Math. Soc. (2), 65:1 (2002), 27–44
  16. E. Bombieri, D. Masser, U. Zannier, “Anomalous subvarieties – structure theorems and applications”, Int. Math. Res. Not. IMRN, 2007:19 (2007), rnm057, 33 pp.
  17. M. Brion, “The structure of polytope algebra”, Tohoku Math. J. (2), 49:1 (1997), 1–32
  18. A. Esterov, “Tropical varieties with polynomial weights and corner loci of piecewise polynomials”, Mosc. Math. J., 12:1 (2012), 55–76
  19. E. Katz, “A tropical toolkit”, Expo. Math., 27:1 (2009), 1–36
  20. L. Allerman, J. Rau, “First steps in tropical intersection theory”, Math. Z., 264:3 (2010), 633–670
  21. L. Allermann, “Tropical intersection products on smooth varieties”, J. Eur. Math. Soc. (JEMS), 14:1 (2012), 107–126
  22. G. M. Bergman, “The logarithmic limit-set of an algebraic variety”, Trans. Amer. Math. Soc., 157 (1971), 459–469

Copyright (c) 2022 Казарновский Б.Y.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies