The second moment of Maass form symmetric square $L$ -functions at the central point
- Authors: Frolenkov D.A.1
-
Affiliations:
- Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
- Issue: Vol 89, No 6 (2025)
- Pages: 183-205
- Section: Articles
- URL: https://journals.rcsi.science/1607-0046/article/view/358694
- DOI: https://doi.org/10.4213/im9640
- ID: 358694
Cite item
Abstract
on the interval
Keywords
About the authors
Dmitry Andreevich Frolenkov
Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
Email: frolenkov@mi-ras.ru
ORCID iD: 0000-0001-6094-7923
SPIN-code: 7791-1256
Scopus Author ID: 55180392900
ResearcherId: L-5552-2015
Doctor of physico-mathematical sciences, no status
References
- R. Khan, M. P. Young, “Moments and hybrid subconvexity for symmetric-square $L$-functions”, J. Inst. Math. Jussieu, 22:5 (2023), 2029–2073
- Hengcai Tang, Zhao Xu, “Central value of the symmetric square $L$-functions related to Hecke–Maass forms”, Lith. Math. J., 56:2 (2016), 251–267
- J. W. C. Lam, “The second moment of the central values of the symmetric square $L$-functions”, Ramanujan J., 38:1 (2015), 129–145
- G. Harcos, P. Michel, “The subconvexity problem for Rankin–Selberg $L$-functions and equidistribution of Heegner points. II”, Invent. Math., 163:3 (2006), 581–655
- R. Khan, “Non-vanishing of the symmetric square $L$-function at the central point”, Proc. Lond. Math. Soc. (3), 100:3 (2010), 736–762
- Ming-ho Ng, Moments of automorphic L-functions, Ph.D. thesis, Univ. Hong Kong, Pokfulam, 2016
- D. Zagier, “Modular forms whose Fourier coefficients involve zeta-functions of quadratic fields”, Modular functions of one variable VI (Univ. Bonn, Bonn, 1976), Lecture Notes in Math., 627, Springer-Verlag, Berlin–New York, 1977, 105–169
- K. Soundararajan, M. P. Young, “The prime geodesic theorem”, J. Reine Angew. Math., 2013:676 (2013), 105–120
- J. B. Conrey, H. Iwaniec, “The cubic moment of central values of automorphic $L$-functions”, Ann. of Math. (2), 151:3 (2000), 1175–1216
- M. P. Young, “Weyl-type hybrid subconvexity bounds for twisted $L$-functions and Heegner points on shrinking sets”, J. Eur. Math. Soc. (JEMS), 19:5 (2017), 1545–1576
- O. Balkanova, D. Frolenkov, “A Voronoi summation formula for non-holomorphic Maass forms of half-integral weight”, Monatsh. Math., 203:4 (2024), 733–764
- F. Strömberg, “Computation of Maass waveforms with nontrivial multiplier systems”, Math. Comp., 77:264 (2008), 2375–2416
- G. Shimura, “On modular forms of half integral weight”, Ann. of Math. (2), 97:3 (1973), 440–481
- Y. N. Petridis, N. Raulf, M. S. Risager, “Double Dirichlet series and quantum unique ergodicity of weight one-half Eisenstein series”, Algebra Number Theory, 8:7 (2014), 1539–1595
- D. R. Heath-Brown, “A mean value estimate for real character sums”, Acta Arith., 72:3 (1995), 235–275
- M. N. Huxley, “On stationary phase integrals”, Glasgow Math. J., 36:3 (1994), 355–362
- V. Blomer, R. Khan, M. Young, “Distribution of mass of holomorphic cusp forms”, Duke Math. J., 162:14 (2013), 2609–2644
- K. Aggarwal, R. Holowinsky, Yongxiao Lin, Zhi Qi, “A Bessel delta method and exponential sums for $operatorname{GL}(2)$”, Q. J. Math., 71:3 (2020), 1143–1168
- O. Balkanova, D. Frolenkov, “Non-vanishing of Maass form symmetric square $L$-functions”, J. Math. Anal. Appl., 500:2 (2021), 125148, 23 pp.
- NIST handbook of mathematical functions, eds. F. W. J. Olver, D. W. Lozier, R. F. Boisvert, C. W. Clark, U.S. Department of commerce, National institute of standards and technology, Washington, DC; Cambridge Univ. Press, Cambridge, 2010, xvi+951 pp.
- G. Harcos, Subconvex bounds for automorphic $L$-functions and applications, D.Sc. thesis, Hungarian Acad. Sci., Budapest, 2011, vii+94 pp.
Supplementary files
